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1.0  INTRODUCTION 
We have studied about matrices and their properties in the previous classes. Now, we are going to learn 
about matrices holding some special properties. In this chapter, we learn about symmetric, skew-
symmetric, Hermitian, Skew-Hermitian matrices. 
We shall also study rank of a matrix, row rank and column rank of a matrix. We shall show that for 
every matrix its rank, row rank and column rank are all equal. 

1.1 OBJECTIVES 

After going through this unit you will be able to: 
• Differentiate between Symmetric and Skew- Symmetric matrices. 

• Differentiate between Hermitian and Skeew Herrmitian matrices. 

• Know about the sub-matrix and minor of a matrix 

• Find the rank of any matrix 

• Find the inverse of a matrix 

• Differentiate between linearly dependent and independent vectors 

• Find characteristics roots and corresponding characteristic vectors of a matrix 

• Verify Cayley Hamilton theorem for various matrices and use it to find the inverse of a matrix. 

• Learn important theorems  related to characteristic roots and  characteristics vectors 

   1.2 REVIEW OF MATRICES 
1.2.1. Matrix 
 An array of mn numbers arranged in m rows and n columns and bounded by square bracket [  ], 
brackets (  ) or ||  || is called m by n matrix and is represented as  

        A =  



























mn2m1m

in2i1i

n33231

n22221

n11211

a...aa
....
a

....
...

....
a

....
a

....
a

....
...

....
a

....
a

a...aa
a....aa

 = 



























mn2m1m

in2i1i

n22221

n11211

a....aa
................
a....aa
................
a...aa
a...aa

          …(1) 

(1) is known as m × n matrix in which there are m rows and n columns. Each member of m × n matrix is 
known as an element of the matrix.  
Note: 
1. In general, we denote a Matrix by capital letter  A = [aij], where aij are  elements of Matrix in which 

its position is in ith row and jth column i.e. first suffix denote row number and second suffix denote 
column number. 

2. The elements a11, a22,..., ann in which both suffix are same called diagonal elements, all other 
elements in which suffix are not same are called non diagonal elements. 

3. The line along which the diagonal element lie is called the Principal Diagonal. 



Algebra, Calculus & Solid Geometry 3 

1.2.2. Zero Matrix or Null Matrix. A Matrix in which each elements is equal to zero is called a zero 
matrix or null matrix. 

e.g.,  
0 0 0
0 0 0
 
 
 

 or 
0 0
0 0
0 0

 
 
 
 
 

or 
0 0 0
0 0 0
0 0 0

 
 
 
 
 

 

are zero matrix respectively of order 2 × 3; 3×2 and 3×3. 
In general we denote zero matrix of order m× n by Om × n. Matrix other than Zero Matrix are called Non- 
Zero Matrix. 
1.2.3. Square matrix. Matrix in which number of row becomes equal to number of column is called 
square matrix i.e. 
If matrix A is of type m × n, where m = n then the matrix is called square matrix otherwise it is called 
rectangular matrix. 
1.2.4. Row Matrix.  A matrix of type 1 × n, having only one row is called row matrix. For example  
( )1 2 3−  is a row matrix. 
1.2.5. Column Matrix. A matrix of type m × 1, having only one column is called column matrix. For 

example 
1
2

3

 
 − 
 
 

 is a column matrix. 

1.2.6. Diagonal Matrix. A square matrix in which all non diagonal elements are equal to zero is called 
diagonal matrix i.e. 
A square matrix A = [aij], is diagonal matrix if aij = 0 for i≠ j. Thus 

2 0
0 1
 
 − 

 or 
2 0 0
0 7 0
0 0 3

 
 − 
 
 

 are diagonal matrices. 

1.2.7. Scalar Matrix. Diagonal matrices in which all diagonal elements are equal are called scalar 
matrix i.e. 
A square matrix A = [aij], is scalar matrix if aij = 0 for i≠ j and aij = k, for i = j .Thus 

2 0 0
0 2 0
0 0 2

 
 
 
 
 

 is scalar matrix. 

1.2.8. Unit Matrix or Identity Matrix. A scalar matrix in which all diagonal elements are unity are 
called Unit matrix or Identity matrix generally denoted by In. 
A square matrix A = [aij], is Identity matrix if aij = 0 for i≠ j and aij = 1, for i = j .Thus 

1 0 0
0 1 0
0 0 1

 
 
 
 
 

, is identity matrix of order 3 × 3. 

1.2.9. Triangular matrix is of two types: 
(a) Upper Triangular Matrix. It is a matrix in which all elements below the principal diagonal are zero  

e.g.     
2 4 8
0 7 3
0 0 3

 
 − − 
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(b) Lower Triangular Matrix. It is a Matrix in which all elements above the principal diagonal are zero 

e.g.    
2 0 0
4 7 0
6 5 3

 
 − 
 − 

 

1.2.10. Sub Matrix:  A matrix B obtained by deleting some rows or some column or both of a matrix A, 
is called a sub matrix of A. 

For example. If  A=
2 1 5
0 7 9
3 4 3

 
 − 
 − 

 then the matrices 
2 1
0 7
 
 − 

, 
2 1 5

0 7 9
 
 − 

 etc. are sub matrix of A. 

1.2.11. Transpose of a matrix 
If matrix A is of type m × n, then the matrix obtained by interchanging the rows and the columns of A is 
known as Transpose of Matrix A, denoted by A’  or AT i.e. 
A= [aij] of m × n order then  
A’  or AT=[aji] of n × m order Matrix,  
Now if A’, B’ be the transpose of matrix A and B respectively, then 
(i) A = (A′)′ i.e. the transpose of transpose of a matrix A is matrix A itself.  
(ii) (A + B)′ = A′ + B′ i.e. the transpose of the sum of two matrices is equal to the sum of their 

transposes. 
(iii) (kA)′=k A′, where k is a scalar. 
(iv) (AB)′ = B′A′ i.e. the transpose of the product of two matrices is equal to the product of their 

transposes, taken in reversed order. 
1.2.12. Conjugate of a Matrix 
 If A be a matrix of order m × n, over complex number system, then the matrix obtained from A by 
replacing each of its elements by their corresponding complex conjugates is called the conjugate of A 
and is denoted by A , where A is also of same order m × n. If A , A  be the conjugate matrices of A, B 
respectively, then  

(i)  ( )A A= . 

(ii)  ( )A + B A + B,= where A and B are conformable for addition. 

(iii)  ( )kA .Ak= , where k is any complex number. 

1.2.12. Conjugate of a Matrix 
 If A be a matrix of order m × n, over complex number system, then the matrix obtained from A by 
replacing each of its elements by their corresponding complex conjugates is called the conjugate of A 
and is denoted by A , where A is also of same order m × n. If A , A  be the conjugate matrices of A, B 
respectively, then  

(i)  ( )A A= . 

(ii)  ( )A + B A + B,= where A and B are conformable for addition. 

(iii)  ( )kA .Ak= , where k is any complex number. 
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(iv)    AB A.B= , where A and B are conformable for multiplication. 
1.2.13.   Transpose Conjugate of a Matrix 
The transpose of the conjugate or conjugate of the transpose of a matrix A is called Transpose conjugate 
of A and is denoted by θA . Thus  

θ ' 'A (A) (A )= = . 
If θA , θB denote the transposed conjugate of A, B respectively, then 
(i)  (A ) Aθ θ = . 

(ii) ( ) A  + B ,A B θ θ θ+ = where A and B are conformable for addition. 

(iii) ( ) .AkA kθ θ= , where k is any complex number. 

(iv) ( ) B .AB Aθ θ θ= , where A and B are conformable for multiplication. 
1.2.14 Adjoint of a Square Matrix  
If A is an n- rowed square matrix, then adjoint of A is defined as a transpose of matrix obtained by 
replacing each of its elements by its cofactors. 
Theorem 1.1: If A be an n-square matrix, then nA(adj. A)= (adj.A)A= A I , where nI  denotes the unit 

matrix of order n. 
Theorem 1.2: If A and B are square matrix of the same order n, then adj. (AB)=(adj.B)(adj.A) . 
1.2.15 Inverse of Square Matrix 
Let A be n-square matrix, if there exist an n-square matrix B such that 

nAB = BA = I , then the matrix A is called invertible and the matrix B is called inverse of A. Inverse of a 
square matrix is denoted by A-1. 
Note. 1. From definition it is clear that A is the inverse of B. 
2.  A non-square matrix does not have any inverse. 
1.2.16 Singular and Non Singular Matrices 
A square matrix A is said to be singular or non singular according as A 0= or A 0≠ . 

Theorem 1.3: If A and B are two non singular matrix of order n, then -1 -1 -1(AB) B A= . 
Proof: Given, A and B are two non singular matrices. 

A 0∴ ≠  and B 0≠ and hence AB A B 0= ≠  

Consider 

                    

-1 -1 -1 -1 -1
n

-1
n

-1 -1
n n

-1
n n

(AB)(B A )=A(BB )A [ BB I ]
AI A
(AI )A AA [ AI =A]
I [ AA =I ]

=

=

= =

=







 

Now consider                       
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-1 -1 -1 -1 -1
n

-1
n

-1 -1
n n

-1
n n

(B A )(AB)=B(A A)B [ AA =I ]
BI B
(BI )B =BB [ BI =B]
I [ BB =I ]

=

=

=







                      

So, -1 -1 -1 -1 -1 -1 -1
n(AB)(B A )=(B A )(AB)=I (AB) =B A⇒ . 

Theorem 1.4: The adjoint of non singular matrix is non singular. 
Proof: Let A be a non singular matrix of order n. Then A 0≠ . 

As we know that nA(adj. A)= A I  

Now, taking determinant both sides, we get 
nA adj.A = A , dividing both side by A 0≠ , we get 

n-1adj.A = A  as A 0 adj.A 0≠ ⇒ ≠  

Hence adjoint of a non singular matrix is non singular. 
Theorem 1.5: If A is a non singular matrix of order n. then 

(a) 
n-1adj.A A=                   (b)   

2adj.(adj. A)= A An−

 
Theorem 1.6: The inverse of every square matrix, if exist, is unique. 
Theorem 1.7: The necessary and sufficient condition for any square matrix A to be invertible is that A 
is non singular. 
Theorem 1.8: If A is non singular matrix, then -1 -1det(A )=(det A) . 

Theorem 1.9: If A is non singular matrix, then 'A  is also non singular and ' -1 -1 '(A ) (A )= . 
1.2.17. Solution of System of Linear Equations 
Any given system of linear equations may be written in term of matrix, such that  
    AX = B       …(i) 
where 

 A = 















=
















=

















3

2

1

333

222

111

d
d
d

Band
z
y
x

X,
cba
cba
cba

 

A is known as co-efficient matrix. 
If we multiply both sides of (i) by the reciprocal matrix A−1, then we get A−1 AX = A−1B 

(A−1A)X = A−1 B  ⇒ I X = A−1B  ⇒ X = A−1B 

⇒       
















z
y
x

 = 















×

















∆
3

2

1

321

321

321

d
d
d

CCC
BBB
AAA

1  where ∆ ≠ 0 

   = 
















++
++
++

∆
332211

332211

332211

dCdCdC
dBdBdB
dAdAdA

1      …(ii) 
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Hence from (ii) equating the values of x, y and z we get the desired result. 
This method is true only when (i) ∆ ≠ 0 (ii) number of equations and number of unknowns (e.g. x, y, z 
etc.) are the same. 
Example 1.  Solve the equations with the help of determinants : 
 x + y + z = 3,  x + 2y + 3z = 4,  x + 4y + 9z = 6. 

Sol. The co-efficient determinant is ∆ = 
941
321
111

 = 2 ≠ 0 

∴          x = 
















946
324
113

2
1  ⇒ x = 

2
1  × 4 = 2 

          y = 
















961
341
131

2
1  ⇒ y = 

2
1 (2) = 1  ⇒  y = 1 

            z = 
















+
+
+

641
421
311

2
1     ⇒ z = 

2
1 [−4 + 6 + (4 − 6)] = 0 ⇒   z = 0 

∴ Solution is x = 2, y = 1, z = 0. 
1. 3. Symmetric And Skew Symmetric Matrices 
1.3.1. Symmetric Matrix 
 A square matrix A = [aij] is said to be symmetric if aij = aji for all i and j 

Examples 
















cfg
fbh
gha

,   
















743
452
321

 

1.3.2. Skew Symmetric Matrix 
If a square matrix A has its elements such that aij = −aji for i and j and the leading diagonal elements are 

zeros, then matrix A is known as skew matrix.  For example 
















−
−

−

013
102
320

,  
















−
−−
0fg
f0h

gh0
 are skew 

symmetric matrices. 

Example 1:  Every square matrix can be expressed as the sum of symmetric matrix and a skew-
symmetric matrix in one and only one way. 
Solution. If A be any square matrix, then we consider 

  B = 
2
1 (A + A′) and C = 

2
1 (A − A′) 

⇒  B + C = 
2
1 (A + A′) + 

2
1 (A − A′) = 

2
1 (A + A′ + A − A′) = A 

Similarly  B′ = 
2
1 (A + A′)′ = 

2
1 [A′ + (A′)′] = 

2
1 [A′ + A] = 

2
1 (A + A′) = B 
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i.e. B′ = B.   This implies B is symmetric matrix  
Now, we consider  

          C′ = 
2
1 (A − A′)′ = 

2
1 [A′ − (A′)′] = 

2
1 (A′ − A) 

   − 
2
1 (A − A′) = −C. 

i.e.          C′ = −C. 
Hence C is a skew symmetric matrix. 

Therefore, every square matrix A can be expressed as A = B + C, where B = 
2
1  (A + A′), which is 

symmetric matrix and C = 
2
1 (A − A′) is skew skew-symmetric matrix ( C′ = −C).  The same process 

can be used to show that the result is unique. 
Example 2: Every skew symmetric matrix of odd order is singular. 
Proof: Let A be a Skew Symmetric matrix of order n, where n is odd. 

'A A∴ = −  
Taking determinant both sides 
So, 

 

'

n

A -A ( 1)A

( 1) ( kA where k is scalar = k A )

( n is odd)

2 0 0

nA A

A A

A A

= = −

= −

= −

= ⇒ =





 

Thus, A is a singular matrix. 
1.4  HERMITIAN AND SKEW HERMITIAN MATRIX 

1.4.1. Hermitian Matrix 
A square matrix ijA=[a ] over the complex numbers is said to be Hermitian if the transposed conjugate of 

the matrix is equal to the matrix itself i.e. θA =A . 
Suppose ijA=[a ]is of the type m × n, then θ

ijA =[a ]  will be of the type n × m where ij jia a=  

So, for the matrix A to be Hermitian , m=n and ij jia a=  for all i and j. 

For example 
0 2 3

2 3 1
i

i
− 

 + 
,

10 1+i i
1-i 8 5+4i
-i 5-4i 0

 
 
 
  

 are Hermitian matrices. 

Corollary: A Hermitian matrix has all its diagonal elements as real numbers. 

Proof: Let A be Hermitian matrix. 

ij jia a∴ = , for all i and j. 
Putting j = I for the diagonal elements, we have  

ij jia a= for all i 
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[ ]
2 0 0

ij iji i a i a i
i

α β α β α β α β

β β

⇒ + = − = + ⇒ = −

⇒ = ⇒ =



 

ija α∴ = , Thus the diagonal elements of a Hermitian metrix are real numbers. 
1.4.2. Skew Hermitian Matrix 
A square matrix ijA=[a ] over the complex numbers is said to be Skew Hermitian if the transposed 

conjugate of the matrix is equal to the negative of  matrix itself i.e. θA =-A . 
Suppose ijA=[a ]is of the type m × n, then θ

ijA =[a ]  will be of the type n × m where ij jia a= −  

So, for the matrix A to be Skew Hermitian , m=n and ij jia a= −  for all i and j. 

For example 
0 2 3

2 3 0
i

i
− 

 − + 
,

10i 1+i i
-1+i 8i 5+4i

i -5+4i 0

 
 
 
  

 are Skew Hermitian matrices. 

Corollary: A Skew Hermitian matrix has all its diagonal elements as either zero or purely imaginary. 
Proof: Let A be Skew Hermitian matrix. 

ij jia a∴ = − , for all i and j. 
Putting j = i for the diagonal elements, we have  

ij jia a= − for all i 

[ ]
2 0 0

ij iji i a i a iα β α β α β α β

α α

⇒ + = − + = + ⇒ − = − +

⇒ = ⇒ =



 

ija iβ∴ = , Thus the diagonal elements of a Skew Hermitian metrix are either zero or purely imaginary 
Example 1: If A is square matrix then prove that  
(i)  . θA+A  is Hermitian matrix. 
(ii)   θA-A  is skew Hermitian matrix. 
Solution: (i)  Consider 

 

θ θ θ θ θ

θ θ θ

(A+A ) =A +(A )
A +A [Q(A ) =A]

=A+Aθ

=  

Thus, A+Aθ is Hermitian matrix. 
(ii)  Consider 

θ θ θ θ θ

θ θ θ

(A-A ) =A -(A )
A -A [ (A ) =A]

=-(A-A )θ

=   

Thus, A-Aθ is Skew Hermitian matrix. 
Example 2: Every square  matrix A can be expressed in one and only one way as P+iQ , where P and Q 
are Hermitian matrices. 

Solution. We have 
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1 1A= (2A) [ ]
2 2

1 1( ) ( )
2 2
1 1( ) i. ( ) P+iQ
2 2i

A A A A

A A A A

A A A A

θ θ

θ θ

θ θ

= + + −

= + + −

= + + − =

 

where, θ1P= (A+A )
2

 and θ1Q= (A-A )
2i

 

Now, θ θ θ θ1 1P = (A+A ) (A +A)=P
2 2

=  

and  

    

θ θ θ θ

θ θ θ

1 1Q =- (A-A ) - (A -A)
2i 2i

1 (A-A ) = Q [ (kA) =kA ]
2i

=

= 

 

Thus both P and Q are Hermitian. 
Hence, A can be expressed as  P+iQ , where P and Q are Hermitian matrices. 
To prove that this expression of A is unique: 
Let, if possible A=R+iS be another expression for A where R and S are Hermitian. We shall prove that 
R=P and S=Q 
Now,  θ θ θ θA =(R+iS) R i S R iS= + = −      [R and S are Hermitian] 

θ

θ

A+A ( ) ( ) 2
1 (A+A )
2

R iS R iS R

R P

= + + − =

⇒ = =
 

Also 

   

θ

θ

A-A ( ) ( ) 2
1S= (A-A )=Q
2i

R iS R iS iS= + − − =

⇒
 

Hence, the expression for A is unique. 
Check Your Progress 
1.  Express the following matrix as the sum of a symmetric and skew symmetric matrix 

 

1 7 1
2 3 4
5 0 5

− 
 
 
  

. 
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Ans. Symmetric matrix is 

91 3
2

9 3 2
2
3 2 5

 − 
 
 
 
 
  
 

and skew symmetric matrix is 

50 2
2

5 0 2
2

2 2 5

 − 
 
 − 
 −  
 

. 

2.  Show that value of determinant of skew symmetric matrix of odd order is always zero. 
3. If A is any square matrix, prove that AA’ and A’A are both symmetric 
4. If A is a skew symmetric matrix of order n, then show that adj.A is symmetric or skew symmetric 
according as n is odd or even . 

1.5. RANK OF A MATRIX 
Let A be m × n matrix.  So, A has sub-matrices of various orders.  The determinant of any such sub-
matrices is defined as minor of matrix A of order r where r < m and r < n [or r ≤ m,  m ≤ n].  If all 
minors of order (r + 1) are zeros and we have at least one non-zero minor of order r, then it is said that 
the rank of matrix A is r and rank of r is represented by ρ(A) = rank of A = r. 
Thus from the above definition of the rank of a matrix A, we have the following observations: 

(a) If A = 
















000
000
000

 = null matrix then rank of A = ρ(A) = 0. 

(b) If A is a nonzero matrix then rank of A i.e.  (A) ≥ 1. 

(c) If A is m × m unit matrix then | A | = 

1000000
0......0000
0......1000
.....................
0...00100
0...00010
0...00001

 = 1 ≠ 0  

i.e. rank of   A = ρ(A) =  m. 
(d) If A is m × n matrices, then ρ(A) ≤ min of m and n. 
(e) If all minors of order r are equal to zero then rank of A = ρ(A) < r. 

Example 1.  Determine the rank of the matrix A = 
















2273
862
541

. 

 Sol. Operating R2 → R2 − 2R1 and R3 → R3 − 3R1, we get 

   ~ 
















−
−
750
210

541
 



12 Matrices 

Again operating R2 → −
2
1 R2, we get 

   ~ 
















− 750
110
541

 

 Next, operating R3 → R3 + 5R2, we get 

   ~ 
















1200
110
541

 

This implies that rank of A = 3.  

Example 2.  Determine the rank of the matrix A = 
















562
241
321

. 

Sol. Operating R2 → R2 − R1 and R3 → R3 − 2R1 

    ~ 
















−
−

120
120

321
 

Next, operating R3 → R3 − R2, we get 

   ~ 















−
000
120

321
.  Here 3rd order minor is zero. 

 But 2nd order minors exist i.e. 
12

32
−

 = −2 − 6 = −8 ≠ 0 

So, the rank of matrix A = 2.  
Check Your Progress 
5. If A is an n-square matrix of rank n-1, show that adj. A ≠ O. 
6. If A is non zero column matrix and B is non zero row matrix, show that ρ(AB)=1 

1.5.1. Elementary Transformations (or Operations) on A Matrix 

The following operations on a matrix are called elementary transformations (i.e. E operations or E-
transformation) 
(a) The interchange of ith and jth rows is represented by Rij, and the interchange of ith and jth columns is 

represented by Cij. 
(b) Multiplication of each element of a row or a column by a non-zero number k. 
i.e. the multiplication of ith row by k is represented by kRi and the multiplication of ith column by p is 

represented by pCi. 
(c)  Addition of m times the elements of a row (or column) to the corresponding elements of another row 

(or column) multiplied by n, where m≠ 0, n ≠ 0.  
The addition of m times ith row to the n times jth row is represented by mRi + nRj. 
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 If a matrix B is obtained from matrix A by such transformation, then the matrix B is called the 
equivalent matrix to matrix A. If matrix B is obtained from A by applying finite number of elementary 
row operation on A, then B is row equivalent to A. If matrix B is obtained from A by applying finite 
number of elementary column operation on A, then B is column equivalent to A. 
Two such equivalent matrices A and B are denoted as A ~ B and the symbol ~ is used for equivalence.  
So, two equivalent matrices have the same order and same rank. 
Theorem 1.15: The rank of a matrix remains unaltered by the application of elementary row and 
column operations. 
Proof: Let A be m × n matrix, such that  

11 1

1

A=
n

m mn

a a

a a

 
 
 
 
 



  



 

If ρ(A)=r , then every minor of order r+1, if any vanishes and there will be at least one non zero minor 
of A of order r. 
Now consider a minor of order r+1 denoted by Mr+1. 
(1)  If we interchange any two rows or columns of A, the value of determinant remains unaltered by 
numerically value but the sign is changed. 
(2)  If one row and column of A is multiplied by any scalar k, the value of determinant multiplied by the 
scalar k. 
(3)  If we apply i i j i i jR R +kR or C C +kC→ → , then the determinant remains unchanged. 

We have seen that in each case of elementary row/column operation, the value of Mr+1 remains 
unaltered. Since all minor of order r+1 in A are zero , they will also be equal to zero in all equivalent 
matrices. 
Thus ρ(B) ρ(A)≤ , where B is a matrix obtained by elementary operations. 
Again, A can be obtained back from B by elementary operations of the same type and so, we have 
ρ(A) ρ(B)≤  
Hence we conclude that ρ(A)=ρ(B) i.e. the rank of any matrices remains unaltered by the application of 
finite chain of row/ column operations. 
1.5.2 Row Echelon Matrix: 
A matrix [ ]ijA a=  is called a row echelon matrix if the following conditions are satisfied: 

(1)   The first non zero element in each non zero row is unity which is called leading entry of row. 
(2)   All the non zero rows,, precede the zero rows, if any. 
(3)   The number of zeros before the leading entry in each row is less than the number of such zero’s in 
the succeeding rows. 

For example 

1 2 4 5 1
0 1 3 2 0
0 0 1 4 7
0 0 0 1 2
0 0 0 0 0

A

 
 
 
 =
 
 
  

 is in row echelon form. 
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1.5.3 Row reduced Echelon Form: 
In addition to the above three conditions, if a matrix satisfies the following conditions: 
Each column which contains a leading entry of a row has all other entries zeros, then the matrix is said 
to be in row reduced echelon matrix. 

1.5.4 Row Rank and Column Rank of a Matrix 
Row rank of a matrix, say A is the number of non zero rows in the row echelon matrix A and is denoted 
by  Rρ (A) . 

Column Rank of a matrix, say A is the number of non zero columns in the column echelon matrix A and 
is denoted by Cρ (A) . 

Note:  (i) Every matrix is row equivalent to row echelon matrix. 
(ii)  Every matrix is column equivalent to a column echelon matrix. 
(iii) If a matrix A is in row echelon form, then its transpose is in column echelon form. 

Example. 1.10: Reduce the matrix 

0 1 3 1 3 1
0 1 3 0 2 3

A=
0 2 6 1 3 9
0 4 12 2 10 7

− 
 
 
 
 − 

to the row reduced echelon form and 

hence find its rank. 

Solution: Applying 2 2 1 3 3 1 4 4 1R R -R ,R R -2R , and R R -4R→ → →  on the matrix A, 

0 1 3 1 3 1
0 0 0 1 1 2

A=
0 0 0 3 3 7
0 0 0 2 2 3

− 
 − 
 −
 − 

 

Applying 1 1 2 3 3 2 4 4 2R R +R ,R R -3R , and R R -2R→ → →  

0 1 3 1 3 1
0 0 0 1 1 2

A=
0 0 0 0 0 1
0 0 0 0 0 1

− 
 − 
 
 − 

 

Applying 1 1 3 2 2 3 4 4 3R R -3R ,R R -2R , and R R +R→ → →  

0 1 3 1 3 1
0 0 0 1 1 2

A=
0 0 0 0 0 1
0 0 0 0 0 0

− 
 − 
 
 
 

 

This is the required row reduced echelon form of the matrix A. Since, the number of non zero rows is 3, 
thus row rank of A is 3. 
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Check Your Progress 

7.  Find the row rank of matrix 
3 4 1 2

A= 3 2 1 4
7 6 2 5

 
 
 
  

.  

Ans. 3 

8. Reduce the matrix 
1 2 3
1 4 2
2 6 5

 
 
 
  

to the row reduced echelon form. Also find their row rank. 

Ans. 2 

1.5.5 Rank of Product of Two Matrices 

Theorem 1.16: The rank of product of two matrices cannot exceeds the rank of either matrix i.e. 
ρ(AB) ρ(A) and ρ(AB) ρ(B)≤ ≤  

Proof: Let 1 2ρ(A)=r ,ρ(B)=r and ρ(AB)=r  

Now we reduce the matrix A to the normal form, 
M

A
O
 
 
 

  

where M is a matrix of  1r  rows and 1r  rank 

Post multiplying by B, we get 
M

AB B
O
 
 
 

  

The matrix 
M

B
O
 
 
 

 will have at most first 1r  non zero rows which can obtained by multiplying first 1r  

non zero rows of M with the column of  B. 

Thus, 1

1

M
ρ(AB) ρ B

O

ρ(AB) r ρ(AB) ρ(A)

r
  

≤  
  

⇒ ≤ ⇒ ≤



 

Thus, the rank of product AB ≤ rank of of the prefactor A   ......(i) 
We have, 'r=ρ(AB)=ρ[(AB) ]  
[As the rank of transpose of a matrix is same as that of original matrix] 

' ' '=ρ(B A ) ρ(B )≤   [ Rank of the product ≤ Rank of prefactor] 
ρ(AB) ρ(B)∴ ≤ . 

Theorem 1.17  The rank, column rank and row rank of a matrix are all equal. 
Proof: Let r be rank, s be the row rank and t be the column rank of a matrix A of type m × n. 
i.e. R Cρ (A)=s, ρ (A)=t and ρ(A)=r  
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As the row rank of the matrix A is s, thus there must be non singular matrix P such that 
B

PA=
O
 
 
 

 , 

where B is a matrix of type s × n. We know that pre or post multiplication by non singular matrix does 
not affect the rank of matrix, therefore 
ρ(PA)=ρ(A)=r    .......(i) 
Since every square minor of of PA of order (s+1) has atleast one row of zeros, thus, each minor of PA of 
order (s+1) is equal to zero. 
ρ(PA) s r s [Using (i)]≤ ⇒ ≤   ...(ii) 

As ρ(PA)=r , thus there must be a non singular matrix Q such that 
C

QA=
O
 
 
 

, where C is a matrix of 

type r × n. 

R Rρ (QA)=ρ (A)=s∴  
Since the matrix QA has only r non zero rows, thus  
ρ(QA) r s r≤ ⇒ ≤    ...(iii) 
From (ii) and (iii), we have r = s   ...(iv) 
Similarly, r=t and hence s=r=t 
Thus, R Cρ(A)=ρ (A)=ρ (A) . 

Example 1: Express 
1 2 1

A 2 5 2
1 2 1

− 
 = − 
  

as the product of elementary matrices. 

Solution: Applying 1 2 1 3 3 1R R -2R ,R R +(-1)R→ →  on the matrix A, 

1 2 1
A 0 1 0

0 0 2

− 
 
 
  

  

Applying 2 2 1 3 3 1C ( 2) , (1)C C C C C→ + − → +  

1 0 0
A 0 1 0

0 0 2

 
 
 
  

  

Applying 3 3
1R R
2

 →  
 

, 

1 0 0
A 0 1 0

0 0 1

 
 
 
  

  

Thus, we observe that by performing the elementary operations 

1 2 1 3 1 2 1 3 1 3
1R R -2R ,R +(-1)R , ( 2) , (1) ,R
2

C C C C  → + − +  
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Successively, we can reduce matrix A to I3 

If 21 31 21 31 3
1RE ( 2), ( 1), ( 2), (1),
2

RE CE CE RE  − − −  
 

 are the corresponding elementary matrices, then  

3 3 31 21 21 31
1I = ( 1)RE ( 2) ( 2) (1)
2

RE RE CE CE  − − − 
 

 

( )

1
1 1 1 1

21 31 3 3 21 31

21 31 3 31 21

1A=[RE ( 2)] [ ( 1)] [ ( 2)] [ (1)]
2

A=[RE (2)][ (1)] 2 [ ( 1)][ (2)]

1 0 0 1 0 0 1 0 0 1 0 1 1
A= 2 1 0 0 1 0 0 1 0 0 1 0

0 0 1 1 0 1 0 0 2 0 0 1

RE RE I CE CE

RE RE CE CE

−
− − − −  ⇒ − − −    

⇒ −  
−       

       ⇒        
              

2 0
0 1 0
0 0 1

 
 
 
    

1.6 ELEMENTARY MATRICES 

 Elementary matrix is a matrix which is obtained from an identity matrix In by a single elementary 
transformation. For example, consider 

3

1 0 0
I 0 1 0

0 0 1

 
 =  
    

Applying 1 1 2 3R R +R +3R→  

3

1 0 3.0 0 1 3.0 0 0 0 1 1 3
I 0 1 0 0 1 0

0 0 1 0 0 1

+ + + + + +   
   
   
      

   

which is an elementary matrix. 
Note: All the elementary matrices are non singular. 
1.6.1 Some Theorems on Elementary Matrices 
Theorem 1.18: If A and B Are two matrices over the field F of the type (m×n) and (n×p) respectively, 
then application of any elementary row (column) operation to A(B) results in the application of the same 
to the product matrix AB and vice versa. 
Proof: Let A= [ ]ij m na ×  and B= [ ]ij n pb ×  

i.e. A=

1

2

m

R
R
:
R

 
 
 
 
 
 

 and B= 1 2C C .. pC    

where  [ ]i1 12 1a a .. ,1i nR a i m= ≤ ≤  
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and  

1j

2j

nj

b

,1
:j

b
C j p

b

 
 
 = ≤ ≤ 
 
  

. 

In other words 1 2 mR ,R ,.......,R are rows of A and 1 2 pC ,C ,.......,C  are columns of B. 

1 1 1 2 11

2 1 2 2 22

1 2
1 2

1 2s

1 2m

...R

...R
: : ... ::

...
AB C C ..

: : ... ::
...R

: : ... ::
...R

p

p

i i i pi
p

s s s p

m m m p

R C R C R C
R C R C R C

R C R C R CR
C

R C R C R C

R C R C R C

  
  
  
  
  
    = =    
  
  
  
  
     

 

where [ ]

1j

2j
i1 12 1

nj

b

a a .. . ;1 ,1
:i j n

b
R C a i m j p

b

 
 
 = ≤ ≤ ≤ ≤ 
 
    

= i1 1 i2 2
1

a a ..
n

j j in nj ik kj
k

b b a b a b
=

=∑  

Case I  Applying elementary row operation i sR tR+  
1

2

i s

s

m

R
R
:
R +tR

A
:
R
:
R

 
 
 
 
 
 =  
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Then 

1 1 1 2 1

2 1 2 2 2

1 2

1 2

1 2

...

...
: : ... :

( ) ( ) ... ( )
AB

: : ... :
...

: : ... :
...

p

p

i s i s i s p

s s s p

m m m p

R C R C R C
R C R C R C

R tR C R tR C R tR C

R C R C R C

R C R C R C

 
 
 
 
 + + + =  
 
 
 
 
    

Case II     Applying to AB, we get  

 
The other cases can similarly be dealt with. Further, on similar lines it can be verified that application of 
elementary column operation on B results in the  application of the same on AB and vice-versa. 
Theorem 1.19: Every elementary row (column) transformation of a matrix can be obtained by pre-
multiplication (post-multiplication) with corresponding elementary matrix. 
Proof: Let A be matrix. 
We write A=  
If denotes any elementary row transformation, we have 
    , 
Where E is the elementary matrix corresponding to the same row transformation . 
Similarily,we write  
If denotes any elementary column transformation, we get 

 

where is the elementary matrix corresponding to the same column transformation . 
Theorem 1.20: The inverse of an elementary matrix is an elementary matrix of the same type: 
(i)    (ii)   (iii)   

(iv)  . 

, 0itR t ≠

1 1 1 2 1 1

2 1 2 2 2 2

1 2
1 2

1 2 s

1 2 m

... R

... R
: : ... : :

...
AB C C ..

: : ... : :
... R

: : ... : :
... R

p

p

i i i p i
p

s s s p

m m m p

R C R C R C
R C R C R C

tR C tR C tR C tR
C

R C R C R C

R C R C R C

   
   
   
   
   
     = =     
   
   
   
   
     

m×n
mI A

α
m mαA=α(I A)=(αI )A=EA

α

nA=AI
α

n n 1α(A)=α(AI )=A(αI )=AE

1E α

1( ) ( )ij ijRE RE− = -1 -1
i i[RE (k)] =RE (k ) -1

ij ij[RE (k)] =RE (-k)
-1

ij ij[CE (k)] =CE (-k)



20 Matrices 

Proof:  (i)  has been obtained from I by applying and obviously, if we apply  again we get 

I. But applying  to means pre-multiplication of with corresponding elementary matrix

, i.e. 

 

(ii)  On applying on I, we get and if we apply on , we get I. Similar 

to (i), we have  

 
Similarly, we can prove (iii) and (vi). 
Theorem 1.21: The rank of the transpose of a matrix is equal to the original matrix i.e.  

Proof:  Consider a matrix A of order ( ).Then the transpose of A denoted by  
will be of order . 

Let  i.e. there exist a non zero monor of order r of . 

Let  be such minor. 

Then which is transpose of , will be sub-matrix of . 
Since the value of determinant remains unchanged when rows and columns are interchanged, therefore  
    

Since    

          ....(1) 

 Now consider a square sub-matrix of order (r+1) from . Then N is a sub-matrix of A. 
Since , therefore all minors of order (r+1) will be zero. 

      

    

     

From (1) and (2),   

Hence   . 
Theorem 1.22:  If A be an matrix of rank r, there exist non singular matrix P and Q such that 

 

Proof:  As A is an matrix of rank r, therefore it can be transformed into the form  by 

elementary transformations. 
Since elementary row (column) operations are equivalent to pre (post) multiplication by the  

ijRE i,jR i,jR

i,jR ijRE ijRE

ijRE

ij ij

1
ij ij

(RE )(RE )

(RE ) RE

I
−

=

∴ =

iR (k) iRE (k),k 0≠ -1
iR (k ) iRE (k)

-1
i i[RE (k )][RE (k)]=I

-1 -1
i i[RE (k)] [RE (k )]⇒ =

T(A )= (A)ρ ρ

m n× TA
( )n m×

(A)=rρ A

rM
T
rM rM TA

T
r rM M=

T
r rM 0 M 0≠ ⇒ ≠

⇒ T(A ) rρ ≥
TN TA

(A)=rρ

⇒ N 0=

⇒ TN 0=

⇒ T(A ) rρ ≤
T(A )=rρ
T(A )= (A)ρ ρ
m×n

rI O
PAQ=

O O
 
 
 

m×n rI O
O O
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corresponding elementary matrices, therefore there exist elementary matrices  and 

such that 

   

Now, since each elementary matrix is non singular therefore product  and  

are non singular matrices, such that   . 

Theorem 1.23:  If A be an matrix of rank r, then there exist non singular matrices P such that 

, where B is an matrix of rank r and O is matrix. 

Proof: We know that if A is matrix of rank r, therefore there exist matrix P and Q such that 

. 

Also every non singular matrix can be expressed as product of elementary matrices. Since Q be non 
singular matrices means exists and can be expressed as product of elementary matrices . 

  Equation (i) becomes , since post multiplication of 

elementary matrices amounts to E—column transformations, last m-r rows of (1) being zero rows, 
remain zero rows on applying . 

Thus, We get a relation of the form , where B is an matrix. 

Since elementary transformations do not alter the rank, therefore the rank of matrix is r. Since B has 

r rows, so  and last m-r rows of are zero rows. 

Theorem 1.24:  If A be an matrix of rank r, then there exist non singular matrices Q such that
, where C is an matrix of rank r and O is matrix. 

Proof:  Do yourself as above theorem. 
Check Your Progress 

1. Find the rank of matrix  by reducing it to normal form. 

Ans. Rank = 2. 

1 2 kP ,P ,.....P

1 2 kQ ,Q ,.....Q

r
k k-1 2 1 1 2 s

I O
P P ,.....P P AQ Q .....Q

O O
 

=  
 

k k-1 1P=P P .....P 1 2 sQ=Q ,Q ,.....Q

rI O
PAQ=

O O
 
 
 

m×n
B

PA=
O
 
 
 

r×n (m-r)×n

m×n

rI O
PAQ=

O O
 
 
 

-1Q 1 2 3 tK K K ...K

∴ r r-1
1 2 3 t

I O I O
PA= Q K K K ...K

O O O O
   

=   
   

1 2 3 tK K K ...K

B
PA=

O
 
 
 

r×n

B
O
 
 
 

ρ(B)=r
B
O
 
 
 

m×n
[ ]AQ= C O m×r m×(n-r)

1 2 1 3
2 4 4 7
1 2 1 2

− 
 − − − 
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2.   Express  as the product of elementary matrices. 

Ans. . 

1.7 Inverse of Matrix 
If A is a non singular matrix, then inverse of matrix A exist and is defined as matrix  satisfies

, where I is unit matrix of same order as that of the matrix A. To find the inverse of matrix 
A write , then perform same suitable elementary row (column) operations on the matrix A and on 
the right hand side till we reach the result . Then . 

Example 1: Find the inverse of matrix using the elementary operations. 

Solution.  We write i.e.,  

Operating  

we get,   

Operating , 

 

Operating , 

1 2 1
2 5 2
1 2 1

A
− 

 = − 
 
 

1 0 0 1 0 0 1 0 0 1 0 1 1 2 0
2 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 2 0 0 2 0 0 1 0 0 1

A
−     

     =      
     
     

-1A
-1 -1AA =A A=I

A=IA
I=BA -1A =B

1 3 2
A= 0 4 1

5 2 3

 
 
 
  

A=IA
1 3 2 1 0 0
0 4 1 0 1 0 A
5 2 3 0 0 1

   
   =   
      

3 3 1 2 2
1R R +(-5)R ,R R
4

→ → ×

1 3 2 1 0 0
1 10 1 0 0 A
4 4

0 -13 -7 -5 0 1

   
   
   =
   
   
   

1 1 2 3 3 2R R +(-3)R ,R R 13R→ → +

5 31 0 1 0
4 4
1 10 1 0 0 A
4 4
15 130 0 - -5 1
4 4

   −   
   
   =   
   
   
      

3 3 1 1 3 2 2 3
-4 -5 1R R ,R R + R ,R R R
15 4 4

−     → × → → +     
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. 

Problems to Check The Progrress 
9. Using elementary operation, find the inverse of the following matrices. 

 
1 2 1
1 1 2

2 1 1
A

− 
 = − 
 − 

 

Ans. 1

3 1 5
1 5 3 1

14
1 5 3

A−

− 
 = − 
 − 

. 

1.8   LINEAR DEPENDENCE AND INDEPENDENCE OF ROW & COLUMN MATRICES. 
Any quantity having n components is called a vector of order n. If are elements of fields (F, 
+,  .), then these numbers written in a particular order form a vector. 
 Thus an n-dimensional vector X over a field (F,+, .) is written as X=  

where  

Row matrix of type is n—dimensional vector written as  
Column matrix of type is also n dimensional vector written as 

 

As the vectors are considered as either row matrix or column matrix, the operation of addition of vectors 
will have the same properties as the addition of matrices. 
1.8.1   Linear Dependence: 
The set of vectors are said to be linearly dependent if there exist scalars  not all 

zero such that  
1.8.2 Linear Independence: 
The set of vectors are said to be linearly independent if there exist scalars   

such that gives . 
Example1: Show that the vectors u=(1,3,2), v=(1,-7,-8) and w=(2,1,-1) are linearly independent. 

2 1 1
3 3 31 0 0 10 5 5
1 7 1 10 1 0 A= 5 7 1 A
3 15 15 15

0 0 1 20 13 44 13 4
3 15 15

 − 
−    

    = − −    
   − −    

 − −
  

-1

10 5 5
1A 5 7 1

15
20 13 4

− 
 = − 
 − − 

1 2 n, ,.....a a a

1 2 n( , ,..... )a a a

i .a F∈

1×n 1 2 nX=[a ,a ,.....a ]
n×1

[ ]
1

2
1 2 n

n

a
a

X= or a a .. a
:

a

 
 
 
 
 
 

1 2 n{v ,v ,.....v } 1 2 na ,a ,.....a

1 1 2 2 n na v +a v +.....+a v 0=

1 2 n{v ,v ,.....v } 1 2 na ,a ,.....a

1 1 2 2 n na v +a v +.....+a v 0= 1 2 na =a =.....=a 0=
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Proof: The vectors are said to be linearly dependent if 
au+ bv +cw=0 where a, b, c are not all zero. 
means a(1,3,2)+b(1,-7,-8)+c(2,1,-1)=(0,0,0)    (1) 
(a+b+2c, 3a-7b+c, 2a-8b-c)= (0, 0, 0) 
which gives   a+b+2c=0     (2) 
   3a-7b+c=0     (3) 
   2a-8b-c=0     (4) 
Adding (3) and (4), we have 
   5a-15b=0      a=3b 

 From (3) 3(3b)-7b+c=0  9b-7b+c  c=-2b 
Putting a=3b and c=-2b in (2), we get 
3b+b-4b=0, which is true. Giving different real value to b we get infinite non zero real values of a and c. 
So a, b, c are not all zero. 
Hence given vectors u, v and w are linearly independent. 
Theorem 1.25:  If two vectors are linearly dependent then one of them is scalar multiple of other. 
Proof:  Let u, v be the two linearly dependent set of vectors. Then there exists scalars a, b(not both zero) 
such that 
  a. u + b. v = 0      (1) 
Case 1.  When  

From (1),  au = - bv   

Hence u is scalar multiple of v. 
Case II.  When  

From (1),  bv = - au   

Hence v is scalar multiple of u. Thus in both cases one of them are scalar multiple of other. 
Theorem 1.26: Every superset of a linearly dependent set is linearly dependent. 
Proof:  Let  be set of n vectors which are linearly dependent. 

Let  where r > n be any super set of . 

As is linearly dependent set 

 There are scalars  not all zero such that 

  

 

As  are not all zero 

 Set  is linearly dependent set. 
Hence every set of linearly dependent set is linearly dependent. 
Theorem 1.27:  Every subset of linearly independent set is linearly independent. 
Proof: Let  be set of n vectors which are linearly independent. 

Let  where r < n be any subset of . 

⇒
∴ ⇒ ⇒

a 0≠

⇒
bu v
a

= −

b 0≠

⇒
av=- u
b

n 1 1 nS {X ,X ......X }=

r 1 1 n n+1 rS {X ,X ......,X ,X ....,X }= nS

1 1 n{X ,X ......X }

∴ 1 2 3 na ,a ,a ,.......,a

1 1 2 2 n na X +a X +.......+a X 0=

1 1 2 2 n n 1 2   a X +a X +.......+a X 0. 0. .... 0. 0n n rX X X+ +⇒ + + + + =

1 2 3 na ,a ,a ,.......,a

∴ r 1 2 n n+1 rS {X ,X ......,X ,X ....,X }=

n 1 1 nS {X ,X ......X }=

r 1 1 rS {X ,X ......,X }= nS
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As is linearly independent set thus  

 gives 

   

where  

 Set  is linearly independent set. 
Hence every subset of linearly independent set is linearly independent. 
Theorem 1.28:  If vectors are linearly dependent, then at least one of them may be written 
as linear combination of the rest. 
Proof:  Since the vectors , are linearly dependent, therefore there exist scalars  

not all zero, such that 

 
Or 

 
Suppose . 

 

or   

Hence vector  is a linear combination of the rest. 

Theorem 1.30:  If the set is linearly independent and the set is linearly 

dependent, then Y is linear combination of the vectors . 
Proof:  Consider the relation 
       (1) 

As set is linearly dependent  

    are not all zero 
We claim that . If  a=0, then (1) becomes  
  

As set is linearly independent 

    

Then from (1), the set is linearly independent which a contradiction to the given 
condition is. Thus a = 0 is not possible. Hence  
From (1), we have  

or   , which  proves the result. 

Theorem 1.31:  The kn-vectors are linearly dependent iff  the rank of the matrix 

with the given vectors as columns is less than k. 

1 1 n{X ,X ......X }

1 1 2 2 n na X +a X +.......+a X 0=

1 2 3 na = a = a ,.......= a 0=

1 1 2 2 r ra X +a X +.......+a X 0= 1 2 3 ra = a = a ,.......= a 0=

∴ r 1 1 rS {X ,X ......,X }=

1 1 nX ,X ......X

1 1 nX ,X ......X

1 2 3 na ,a ,a ,.......,a

1 1 2 2 n na X +a X +.......+a X 0=

1 1 2 2 i i i+1 i+1 n na X +a X +....+a X +a X ...+a X 0=

ia 0≠

i i 1 1 2 2 i-1 i-1 i+1 i+1 n n-a X =a X +a X +....a X +a X ...+a X

1 2 i-1 i+1 n
i 1 2 i-1 i+1 n

i i i i i

a a a a aX = X + X +....+ X + X ...+ X
-a -a -a -a -a

iX

1 1 n{X ,X ......X } 1 1 n{X ,X ......X ,Y}

1 1 nX ,X ......X

1 1 2 2 n na X +a X +.......+a X aY 0+ =

1 1 n{X ,X ......X ,Y}

∴ 1 2 3 na ,a ,a ,.......,a ,a
a 0≠

1 1 2 2 n na X +a X +.......+a X 0=

1 1 n{X ,X ......X }

∴ 1 2 3 na = a = a ,.......= a 0=

1 1 n{X ,X ......X ,Y}
a 0≠

1 1 2 2 n n-aY=a X +a X +.......+a X

1 2 n
1 2 n

a a aY= X + X +.......+ X
-a -a -a

1 2 kA ,A ,......,A

1 2 kA=[A ,A ,.....,A ]
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Proof:  Let  

where  are scalars 

 

 

Which can be written in matrix form as 

 
 

Let the vectors be linearly dependent. 

So, from the relation (i), scalars are not all zero and thus the homogeneous system of 
equations given by (ii) has non-trivial solution. Hence .Converse of this theorem is also true. 

Theorem 1.32:  A square matrix A is singular iff its columns (rows) are linearly dependent. 

Proof: Let n be the order of the square matrix A and be its columns. 

 

Proceed in same way as above theorem to prove  

Since , thus and hence A is singular matrix. 

Conversely, the column vectors of A are linearly dependent. 

Theorem 1.33:  The kn-vectors are linearly independent if the rank of the matrix 

is equal to k. 

Proof:  Proceed in the same way as above theorem to obtain . Now suppose . 

Then and homogeneous system of equations given by (ii) has trivial solution only. 

 

Thus, the vectors are linearly independent. 

1 1 2 2 kx A A ,...... A 0kx x+ + =

1 2 k, ,......,x x x

11 12 1

21 22 2
1 1 k

1 2

x x ..... x O
: : :

k

k

n n nk

a a a
a a a

a a a

     
     
     ⇒ + + + =
     
     
     

11 1 12 2 1

21 1 22 2 2

n1 1 2 2

a ...... 0
a ...... 0
..............................................
a ...... 0

k k

k k

n nk k

x a x a x
x a x a x

x a x a x

⇒ + + + =
+ + + =

+ + + =

111 12 1k

221 22 2k

n1 n2 nk

a a ... a 0
a a ... a 0

:: : : : :
:: : : : :

a a ... a 0k

x
x

x

    
    
    
    =
    
    
        

AX=O⇒

1 2 kA ,A ,......,A

1 2 k, ,......,x x x
ρ(A)<k

1 2 nA ,A ,......,A

1 2 n A=[A ,A ,......,A ]∴

ρ(A)<n

ρ(A)<n A 0=

1 2 kA ,A ,......,A

1 2 kA=[A ,A ,.....,A ]

AX=O

A 0≠

1 2 x ..... 0kx x∴ = = = =

1 2 kA ,A ,.....,A
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Theorem 1.34:  The number of linearly independent solution of the equation AX=O is (n-r) where r is 
the rank of matrix A. 
Proof: Given that rank of A is r which means A has r linearly independent columns. Let first r columns 
are linearly independent. 

Now, , where are column vectors of A. 

   ...(i) 

As the set is linearly independent, thus each vector can be written as 
linear combination of . 

Now,  

 
................................................. 

 where k=n-r    ...(ii) 
From (i) and (ii), we get 

 
Thus, AX=O has (n-r) solutions. 
Check Your Progress 

1.  Find the vector p if the given vectors are linearly dependent 
1 1 1
1 , , 0

3 3 1
p

     
     −     
     
     

. 

Ans. p=2. 
1.9 CHARACTERISTICS MATRIX 

If A be a square matrix of order n, then we can form the matrix [A − λI], where I is the unit matrix of 
order n and λ is scalar.  The determinant corresponding to this matrix equated to zero is called the 
characteristic equation  i.e. if A − λI be the matrix then  

1 2 nA=[C , ,..... ,....., ]rC C C 1 2 nC , ,.....,C C

1

2
1 2 n 1 1 2 2 n[C , ,....., ] 0 C ..... 0

: n

n

x
x

C C x C x C x

x

 
 
 ∴ = ⇒ + + + =
 
 
 

1 2 r[C , ,....., ]C C r r+1 nC , ,.....,C C

1 2 rC , ,.....,C C

r+1 11 1 12 2 1r ra C a ..... aC C C= + + +

r+2 21 1 22 2 2r ra C a ..... aC C C= + + +

n k1 1 k2 2 kr ra C a ..... aC C C= + + +

11 21 1

12 22 2

1 2

1 2 n-r

: : :

, ,.....,X1 0 0
0 1 0
0 0 0
: : :

0 0 1

k

k

r r kr

a a a
a a a

a a a
X X

     
     
     
     
     
     
     = = =−
     

−     
     
     
     
     −     
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  |A − λI| =  = 0  …(1) 

is the characteristic equation of A. 
 On expanding the determinant (1), the characteristic equation may be written as  
 (−1)n λn + a1 λn−1 + a2 λn−2 + … + an−1

 λ + an = 0 
which is nth degree equation in λ. 
 The roots of (1) are called eigen values or characteristic roots or latent roots of the matrix A.  
Eigen Vectors  

 We take the matrix A =  

And if X =  where x1, x2, …, xn are vectors 

then the linear transformation Y = AX …(2), transforms the column vector X into the column 
vector Y.  Generally, it is required to find such vectors which either transform it is into them selves or to 
a scalar multiple of themselves.  If X be such a vector which is transformed into λX using the 
transformation (2) then λX = AX  ⇒  AX − λX = 0 
i.e.          [A − λI]X = 0       …(3) 
 The matrix equation (3) represents n homogeneous linear equations. 
  (a11 − λ)x1 + a12 x2 + a13 x3 + … + a1n xn = 0 
  a21 x1 + (a22 − λ)x2 + a23 + x3 + … + a2n xn = 0 
  a31x1 + a32 x2 + (a33 − λ)x3 + … + a3n xn = 0    …(4) 
  ………………………. 
  an1 x1 + an2 x2 + (an3 − λ)x3 + … + ann−λ xn = 0 
 This equation (4) will have a non-trivial solution only if to co-efficient matrix is singular i.e. if 
the determinant |A − λI| = 0. 
 This equation is also called characteristic equation of the transformation and is also the same as 
the characteristic equation (1) of matrix A.  This characteristic equation has n roots which are eigen 
values of A corresponding to each root of (1), the equation (3) has non-zero solution. 

λ−

λ−
λ−

λ−

nnnnn

n

n

n

aaaa

aaaa
aaaa
aaaa

...
...............
...............

...

...

...

321

3333231

2232221

1131211



























nn3n2n1n

n3333231

n2232221

n1131211

a...aaa
...............
...............

a...aaa
a...aaa
a...aaa























n

3

2

1

x
...
x
x
x



Algebra, Calculus & Solid Geometry 29 

           X =  

which is known as an eigen vector or latent vector.   So, if X is a solution of (3) then KX is also a 
solution, where K is an arbitrary constant.  So, we see that the eigen vector corresponding to an eigen 
value is not unique.  

Example 1. Find the eigen values and eigen vectors of the matrices    A = . 

 Sol. The characteristic equation of the given matrix is |A − λI| = 0 

⇒  = 0 

i.e. (1 − λ) (4 − λ) − 4 = 0 ⇒ λ2 − 5λ = 0 ⇒ λ(λ − 5) = 0 
i.e.  λ = 0, 5  ∴ eigen values of A are 0 and 5. 

So, corresponding to λ = 0 eigen vectors are given by  = 0 

i.e. x1 + 2x2 = 0  and 2x1 + 4x2 = 0 

i.e. single equation x1 + 2x2 = 0 ⇒   so for λ = 0 eigen vectors are (2, −1) and for λ = 

5, we have  = 0  

⇒   −4x1 + 2x2 = 0  and  2x1 − x2 = 0. 
Properties of Eigen Values   
(I) The sum of the eigen values of a matrix is the sum of the elements of the principal diagonal.  We 

will prove this property for a matrix of order 3 and the method can be extended for the matrices 
of any finite order. 

Let           A =       …(1) 

Then characteristic matrix |A − λI| = 0  

⇒   = 0 

⇒ −λ3 + λ2(a11 + a22 + a33) −λ(    ) + … = 0      …(2) 
If λ1, λ2 and λ3 be eigen values of A then  

 |A − λI| = −λ3 + λ2 (λ1 + λ2 + λ3) − …. + (−1)3 λ1 λ2 λ3  …(3) 
Equating the co-efficients of λ2 from (2) and (3), we get 

       λ1 + λ2 + λ3 = a11 + a22 + a33 which is the required result. 
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(II) The product of the eigen values of a matrix A is equal to its determinants.  If take λ = 0 in (3) 
then, we get |A − 0| = −λ1λ2λ3 which is the required result. 

(III) If λ is an eigen values of a matrix A, then  is the eigen value of inverse matrix A−1.  If X be the 

eigen vector corresponding to the eigen value λ then  
AX = λX  …(4) 
Pre-multiplying (4) by A−1, we get A−1AX = A−1λX 

i.e. IX = λA−1X ⇒ X = λ(A−1X) ⇒ A−1X = X 

This is of the same form as that in (1) from which we get that  is an eigen value of the inverse 

matrix A−1. 

(IV) If λ is an eigen value of a matrix A, then  is an eigen value of A−1.  As A is an orthogonal 

matrix so A−1 will be same as the transpose of matrix A i.e. A′ = A−1.  So,  is an eigen value of 

A′.  But the matrix A and A′ have the same eigen values.  

[since we know that |A − λI| = |A′ − λI| ].  Hence  is also an eigen value of A.  

(V) If λ1, λ2,…, λn are eigen values of a matrix A then Am has the eigen values λ1
m, λ2

m, …, λn
m  

where m is a positive ineteger.   
If Ai be the eigen value of A and Xi be the corresponding eigen vector, then  
    AXi = λi Xi       …(1) 
 Consider A2 Xi = A(AXi) = A(λi Xi) = λi (AXi) = λi(λi Xi) = λi

2 Xi similarly, we proceed and find 
A3 Xi = λi

3 Xi and so on such that in general we get 
    AmXi = λi

m Xi      …(2) 
which has the same form as (1).  Hence λi

m is an eigen-value of Am and the corresponding eigen vector 
is the same as that of Xi.  
Example 2. Find the characteristic roots and characteristic vectors of the matrix 

  A = . 

Sol. The characteristic equation of matrix A is | A − λI | = 0 i.e. 

   = 0 

i.e. (8 − λ) [(7 − λ) (3 − λ) − 16] + 6[(−6) (3 − λ) + 8] + 2[24 − 2(7 − λ)] = 0 
i.e. (8 − λ) [21 + λ2 − 10λ − 16] + 6[−10 + 6λ] + 2[24 − 14 + 2λ] = 0 
i.e. −λ3 + 18λ2 − 85λ + 40 − 60 + 36λ + 20 + 4λ = 0 
i.e. λ3 − 18λ2 + 45λ = 0 i.e. λ = 0, 3, 15. 
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∴ Corresponding to λ = 0, eigen vectors are given by  

       = 0 

i.e. equations are 
  8x1 − 6x2 + 2x3 = 0       …(1) 
  −6x1 + 7x2 − 4x3 = 0       …(2) 
  2x1 − 4x2 + 3x3 = 0       …(3) 
From (2) and (3) we get  

  i.e.  

i.e. eigen vector are (1, 2, 2) 
Similarly from (1) and (2) we get the same vectors 

Now for λ = 3, eigen vectors are obtained from  = 0 

i.e.   = 0 

i.e. equations are  
  5x1 − 6x2 + 2x3 = 0       …(4) 
  −6x1 + 4x2 − 4x3 = 0      …(5) 
and  2x1 − 4x2 = 0       …(6) 
From (4) and (5), we get 

   

i.e.  ⇒  

i.e. eigen vectors are (2, 1, −2) and for λ = 15, eigen vectors are given by  

 = 0 ⇒   = 0 

i.e. equation are  −7x1 − 6x2 + 2x3 = 0     …(7) 
6x1 + 8x2 + 4x3 = 0         …(8) 
and   2x1 − 4x2 + 2x3 = 0      …(9) 
From (7) and (8), we get 

   i.e.  

i.e. eigen vectors are (2, −2, 1) corresponding to λ = 15.   
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Example 3.  Find the eigen values and eigen vectors of the matrix                   

                                      . 

Sol. Let the given matrix be A = . 

So, the characteristic equation of A is |A − λI|  = 0 

i.e.    = 0      …(1) 

⇒ (6 − λ) [(3 − λ)2 − 1] + 2[−2(3 − λ) + 2] + 2[2 − 2(3 − λ)] = 0 
⇒              (6 − λ) [9 − 6λ + λ2 − 1] + 2[2λ − 4] + 2[2λ − 4] = 0 
⇒       −λ3 + λ2[6 + 6] − λ[36 − 8 + 8] + [48 −8 − 8] = 0 
⇒        λ3 − 12λ2 + 36 λ − 32 = 0 
⇒            λ3 − 2λ2 − 10λ2 + 20λ + 16 λ − 32 = 0 
⇒  (λ − 2)2 (λ − 8) = 0 i.e.  λ = 2, 2 and 8. 
which are the characteristic roots of (1). 
 Now corresponding to the eigen values λ = 2, 2, 8 the given eigen vectors are obtained from [A − 
λI]X = 0. 

i.e.        …(2) 

(2) may be written as  
  (6 − λ)x1 − 2x2 + 2x3 = 0,      …(A) 
  −2 x1 + (3 − λ)x2 − x3 = 0,      …(B) 
and  2x1 − x2 + (3 − λ)x3       …(C) 
we now, consider different cases. 
Case I. When λ = 2, then (A), (B) and (C) may be written as  
  4x1 − 2x2 + 2x3 = 0       …(A1) 
  −2x1 + x2 + x3 = 0       …(B1) 
  2x1 − x2 + x3 = 0       …(C1) 
 If x3 = 0, then from (A1) and (B1), we get 

  −2x1 + x2 = 0 i.e.  

and so eigen vector for λ = 2, for x3 = 0 is X1 =  

and when x2 = 0, then from (A1) and (B1) for λ = 2,  
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2x1 + x3 = 0 ⇒  

∴ another eigen vector for λ = 2 is X2 =  

Case II.  When λ = 8, equations (A), (B) and (C) become 
  −2x1 − 2x2 + 2x3 = 0                 …(A11) 
  −2x1 − 5x2 − x3 = 0      …(B11) 
  2x1 − x2 − 5x3 = 0      …(C11) 
eliminating x3 from (A11) and (B11), we get 

  x1 + 2x2 = 0 i.e.      …(M) 

and by eliminating x1 from (A11) and (B11), we get 

  x2 + x3 = 0 i.e.      …(N) 

Using (M) and (N), we get   

i.e. corresponding to λ = 8,  eigen vector is X3 =  

Example 1.  Find the eigen values and eigen vectors of the matrix                                                         

    A = . 

Sol. The characteristic equation of the given matrix is  

   |A − λI| =  = 0 

i.e. λ3 + λ2 − 21λ − 45 = 0 ⇒ (λ + 3) (λ + 3) (λ − 5) = 0 
i.e.  eigen values are λ = −3, −3, 5 
∴ If x, y and z be the eigen vectors.  Corresponding to the eigen values λ  

(I) We have         …(1) 

Now for λ = 5 we have  
  −7x + 2y − 3z = 0 2x − 4y − 6z = 0 
  −x − 2y − 5z = 0 

from (1) and (2)  
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Hence eigen vector is [1,  2,  −1]   

(II) If λ = −3, then from (1), we get  = 0 which gives only one independent 

x + 2y − 3z = 0       …(3)  

if we take  y = 0, we get  x − 3z = 0 ⇒  

∴ for λ = −3, eigen vector is (3, 0, 1) when y = 0. 

at when  z = 0, (3) gives  x + 2y = 0 ⇒  

i.e. eigen vector in this case is (2, −1, 0) 
∴ the eigen vectors obtained are (1, 2, −1), (3, 0, 1) and (2, −1, 0) 
which are the required result.  

Example 2.  Find the sum and the product of eigen values of A = . 

Sol. The characteristic equation of matrix A is |A − λI| = 0 

i.e.   = 0 

i.e. (2 − λ) (1 − λ) (2 − λ) + 3[1 + 2(2 − λ)] + (2) (0 − ) = 0 
⇒       (2 − λ) (λ2 − 3λ + 2 + 3) − 6λ + 15 + 2 − 2λ = 0 
⇒            −λ3 + 5λ2 − 11λ + 10 − 6λ + 15 + 2 − 2λ = 0 
⇒          λ3 − 5λ2 + 19λ + 19 = 0 
∴ sum of the eigen value λ1 + λ2 + λ3 = −(−5) = 5 
and the product of the eigen values is λ1 λ2 λ3 = −19. 
Check Your Progress 
1. Determine the charecteristics roots and the corresponding characteristics vectors of the matrix 

8 6 2
6 7 4

2 4 3
A

− 
 = − − 
 − 

. 

Ans. Characteristics roots are 0, 3, 15. 
1.10  CAYLEY-HAMILTON THEOREM 

 Every square matrix satisfies its characteristic equation i.e. if A be the given square matrix of 
order n then its characteristic equation is |A − λI| = 0. 
i.e. (−1)nλn + K1 λn−1 + K2 λn−2 + K3 λn−3 + … + Kn−1

 λ + Kn = 0.  …(M1) 
then A will satisfy (M1) i.e. (−1)n An + K1 An−1 + K2 An−2 + K3 An−3 + .. + KnI = 0 will hold good. 
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We take adjoint of the matrix A − λI as P i.e. P = adj. |A − λI|.  Also, each element of P is a co-factor of 
elements of |A − λI| so these co-factors are polynomials of degree (n − 1) or less in λ. 
 So, can be split up into a number of matrices, which are co-efficients of the same power of λ and 
can be written as  
           P = P1 λn−1 + P2 λn−2 + P3 λn−3 + … + Pn−1λ + Pn …(M2) 
where P1, P2, P3,…, Pn are all square matrices of order n, whose elements are functions of matrix A. 
 By matrix property it is known that if A is a square matrix then  
         A × adj. A  = |A|×I, where I is unit matrix of same order as that of A. 
∴      [A − λI] × P = |A − λI| × I 
So using (M1) and (M2) we may write it as 
[A − λI] × [P1 λn−1 + P2 λn−2 + P3 λn−3 + … + Pn−1 λ + Pn] 
= [(−1)n λn + K1 λn−1 + … + Kn−1 λ + Kn]I   …(M3) 
 From (M3), equating the co-efficients of powers of λ, we get 
     (−1)P1 = (−1)n I,       …(M4) 
           AP1 − P2 = K1I,       …(M5) 
           AP2 − P3 = K2I,       …(M6) 
            AP3 − P4 = K3I,       …(M7) 
  … … 
         APn−1 − Pn = Kn−1I,                …(Mn+3) 
and       APn = KnI.                 …(Mn+4) 
Next,  pre-multiplying the equations (M4) by An, (M5) by An−1, .. and (Mn+3) by P and (Mn+4) by I, we get 
   −AnP1 = (−1)n An,       …(R1) 
  AnP1 − An−1 P2 = K1 An−1      …(R2) 
 An−1P2 − An−2P3 = K2 An−2      …(R3) 
 … … … 
 A2 Pn−1

 − APn = Kn−1 A       …(Rn) 
       APn = KnI                 …(Rn+1) 
Now, adding them, we get 
          O = (−1)n An + K1 An−1 + K2An−2 + … + Kn−1A + KnI   …(X) 
As left hand side terms cancel. 
1.10.1 Inverse of a matrix using Cayley Hamilton theorem 
 To find the inverse of any matrix A, we multiply both sides of (X) by A−1 and get (−1)n An−1 + K1 
An−2 + K2 An−3 + …+ Kn−1 + Kn A−1 = 0 

⇒        A−1 = − [(−1)n An−1 + K1 An−2 + K2 An−3 + … + Kn−1] 

Example 1.  Using Cayley − Hamilaton theorem, find the inverse of matrix                                     

A = . 

Sol. Let the characteristic equation be |A − λI| = 0  

nK
1
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i.e.   = 0 

⇒ (5 − λ) (2 − λ) − 9 = 0  ⇒ 10 + λ2 − 7λ − 9 = 0 
⇒  λ2 − 7λ + 1 = 0       …(1) 

Now         A2 = A × A =  

Consider 

∴       A2 − 7A + I = 7   

    =  =     …(2) 

∴ Cayley Hamilton is satisfied.  Now, multiplying both sides of (2) by A−1, we get 
     A − 7I + A−1 = 0 

∴        A−1 = 7I − A =  

Hence,        A−1 =  
Example 2.  Using Cayley-Hamilton theorem, find the inverse of the matrix 

A = . 

Sol. The characteristic equation of the matrix A is  

  |A − λI| = 0 i.e.  = 0 

This may be written as (1 − λ) [(1 − λ)2 − 1] + 3(−2 + λ − 1] = 0 
          −λ3 + 3λ2 + λ − 9 = 0 
i.e.             λ3 − 3λ2 − λ + 9 = 0      …(1) 
As (1) satisfied Cayley-Hamilton theorem, (given by question) we have  
          A3 − 3A2 − A + 9I = 0      …(2) 
Multiplying (2) by A−1, we get A2 − 3A − I + 9A−1 = 0    …(3) 
So, we require 

         A2 =  
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∴         A2 =  

∴ (2) may be written as  A−1 = [I + 3A − A2] 

i.e.        A−1 =  

   =  

is the required inverse matrix of A. 

Example 3.  Verify Cayley-Hamilton theorem for the matrix,    A =  and then find A8. 

 Sol. The characteristic equation is |A − λI| = 0. 

i.e.  = 0 ⇒ λ2 − 1 − 4 = 0 ⇒ λ2 = 5. 

Now,       A2 =  = 5I 

i.e.         A2 = 5I. 
Hence Cayley-Hamilton theorem is satisfied. 
Next, A2 = 5I ⇒ A4 = 25I ⇒ (A4)2 = (25I)2 
⇒         A8 = 625I. 

Example 4.  Find the characteristic equation of the matrix  A =  and hence find the matrix 

represented by A8 − 5A7 − 7A6 − 3A5 + A4 − 5A3 + 8A2 − 2A + I. 
 Sol. The characteristic equation of the matrix A is |A − λI| = 0 

i.e.   = 0  

⇒  λ3 − 5λ2 + 7λ − 3 = 0       …(1) 
Using Cayley-Hamilton theorem, we know that matrix A satisfied the eq. (1) 
i.e.  A3 − 5A2 + 7A − 3I = 0      …(2) 
Now, we consider the matrix 
  A8 − 5A7 + 7A6 − 3A5 + A4 − 5A3 + 8A2 − 2A + I   …(3) 
and arrange it to in such a manner that (2) is used to reduce (3) in simple form. 
i.e.  (3) may be arranged as 
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 (A8 − 5A7 + 7A6 − 3A5) + (A4 − 5A3 + 7A2 − 3A) + A2 + A + I 
  = A5(A3 − 5A2 + 7A − 3I) + A(A3 − 5A2 + 7A − 3I) + A2 + A + 1 
using (2) 

  = A2 + A + I =  

  =  

which is the required result.  

Since        A2 =  =  

  =  

Example 5.  Find the characteristic equation of the matrix  A = .  Show that the 

characteristic equation is satisfied by A and hence obtain the inverse of the given matrix. 
Sol. The characteristic equation is |A − λI| = 0. 

i.e.  = 0 ⇒ λ3 − 4λ2 − 20λ − 35 = 0  …(1) 

we have to show that A satisfies (1) i.e. A3 − 4A2 − 20A − 35I = 0   …(2) 
Consider 

         A2 = A.A =  

   =  

⇒         A2 =  

∴         A3 = A2 A =   
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   =  

   =  

Now, we consider A3 − 4A2 − 20A − 35I, which is 

  =  −  

  =  

  =  

∴ Equation (2) is satisfied and A−1 = [A2 − 4A − 20I] 

i.e.       A−1 =  

  = 

 

=  

i.e.       A−1 =  is the required result.. 

1.12 SUMMARY 
In this unit we have learned about 
• A matrix is said to be symmetric if . 
• A necessary and sufficient condition for a matrix to be skew symmetric is that . 
• Diagonal elements of a skew symmetric matrix are zero. 
• A matrix is said to be Hermitian if . 
• A necessary and sufficient condition for a matrix to be skew Hermitian is that . 
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• Diagonal element for a skew Hermitian matrix are either zero or purely imaginary. 
• The rank of a matrix is the largest order of any non zero minor of the matrix. 
• The elementary operation is operation on any row/column like interchange of row/column, 

multiplication of all element of row/column by a number, addition of any row or column. The rank 
of a matrix is not changed when we apply elementary operation on a matrix. 

• Two matrices are said to be equivalent if one can be obtained from other by applying finite number 
of elementary operation. Equivalent matrices have same rank.   

• A matrix is said to be row echelon matrix if the leading entry of each non zero row is unity, the 
number of zero before the leading entry is less than the number of zero in the succeeding rows and 
the non zero rows precede the zero rows. A row echelon matrix is said to be row reduced echelon 
matrix if each column containing the leading entry of a row has all the other elements as zero. 

• A matrix of order and rank r is equivalent to the matrix in the normal form. 

• The matrix obtained by applying a single elementary operation on identity matrix is called 
elementary matrix. 

• The rank of the product of two matrices cannot exceed the rank of either matrix. The rank, row 
rank and column rank are all equal. 

• If A is matrix, then the matrix , for some scalar is called characteristics matrix of A. 
• The determinant of the matrix is a non null polynomial of degree n in and is called 

characteristics polynomial of matrix A. 
• The equation , for some scalar is called the characteristics equation of matrix A and 

its roots , are called the characteristics roots of matrix A. 

• If is the characteristic root of an  matrix A, then any solution of the equation  
except is called a characteristic vector of matrix A. 

• If A is non singular, then the eigen value of is the reciprocal of the eigen value of A. 
• The eigen value of diagonal matrix is the diagonal elements of the matrix. 
• The eigen value of triangular matrix is the diagonal elements of the matrix. 

• If a is eigen value of a non singular matrix A, then  is an eigen value of adj. A. 

• The characteristic vectors corresponding to distinct characteristic roots of a matrix are linearly 
independent. 

• The distinct roots of the characteristic equation of a matrix A are also the distinct roots of 
the minimal equation of the matrix A. 

1.13 KEY TERMS 
• Symmetric matrix: A square matrix A = [aij] is said to be symmetric if aij = aji for all i and j. 
• Skew Symmetric matrix: If a square matrix A has its elements such that aij = −aji for i and j and 

the leading diagonal elements are zeros, then matrix A is known as skew matrix. 

m×n rI O
O O
 
 
 

n×n A- Iλ λ
A- Iλ λ

A- I 0λ =   λ

1 2, ,...., nλ λ λ

λ n×n AX= Xλ
X=0

-1A

A
a

  

( )=0φ λ
m( )=0λ
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• Hermitian Matrix: A square matrix  over the complex numbers is said to be Hermitian if 

the transposed conjugate of the matrix is equal to the matrix itself i.e. . 
• Skew Hermitian Matrix: A square matrix  over the complex numbers is said to be Skew 

Hermitian if the transposed conjugate of the matrix is equal to the negative of  matrix itself i.e. 
. 

• Rank of a Matrix: A non zero matrix has rank r if every minor of order r+1 vanishes and it has at 
least one non non zero minor off order r. 

• Linear Dependence and Independence of row and column Matrices: The set of vectors 
are said to be linearly dependent if there exist scalars  not all zero such 

that .The set of vectors are said to be linearly independent 

if there exist scalars   such that gives . 
1.14 QUESTION AND EXERCISE 

1. Define inverse of a square matrix and show that inverse of a matrix is unique if it exists 
2. Prove that square matrix A is invertible iff A is non singular. 

3. Find the adjoint of the matrix and verify A(adj. A)=(adj.A)A= . 

4. Calculate the inverse of the matrix if exists. 

5. If A and B are square matrix of same order and a is non singular, then prove that . 

6. Solve the system of equation using matrix method 

(i)    (ii)  

7. If A is any square matrix, prove that  and are both symmetric. 
8. Prove that is symmetric or skew symmetric according as A is symmetric or skew symmetric. 
9. If A is skew symmetric matrix of order n, then show that adj. A is symmetric or skew symmetric 
according as n is odd and even. 

10. Express  as the sum of symmetric and skew symmetric matrix. 

11. Show all positive odd integral power of a skew symmetric matrix are skew symmetric while positive 
even integral power are symmetric. 
12. If A and B are Hermitian, show that AB +BA is Hermitian and AB is Hermitian iff AB = BA. 

ijA=[a ]
θA =A

ijA=[a ]

θA =-A

1 2 n{v ,v ,.....v } 1 2 na ,a ,.....a

1 1 2 2 n na v +a v +.....+a v 0= 1 2 n{v ,v ,.....v }

1 2 na ,a ,.....a 1 1 2 2 n na v +a v +.....+a v 0= 1 2 na =a =.....=a 0=

2 1 3
3 1 2
1 2 3

 
 
 
  

3 A I

1 2 1
3 1 2
0 1 2

 
 
 
  

-1A BA B  =    

2x-3y+z=9
x+y+z=6
x-y+z=2

x+z=7
2x+y=7
3x+2y+z=17
TA A TAA

TABB

1 3 5
-6 8 3
-4 6 5
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13. Find the rank of matrix . 

14. Find the rank of matrix , a, b, c being real. 

15. If A is a square matrix of rank n -1, show that adj. A . 

16. Reduce the following matrix to normal form . 

17. Reduce the matrix to . Hence find . 

18. Express as product of elementary matrices. 

19. For the given matrix A, find non singular matrix P and Q such that PAQ is in normal form and hence 
determine the rank of A. 

     . 

20. Prove that the set of vector (0, 2, -4), (1,-2,-1), (1,-4, 3) is linearly dependent. 

21. Find p if the vectors , ,  are linearly dependent. 

22. Verify Cayley Hamilton theorem for the given matrix and also find  also: 

 . 

1.15 FURTHER READING 
L.N. Herstein Topic in Algebra, , Wiley Eastern Ltd. New Delhi, 1975 
K.B. Datta, Matrix and Linear Algebra, Prentice hall of India Pvt. Ltd. New Delhi, 2002 
P.B.Bhattacharya, S.K.Jain and S.R.Nagpaul, First Course in Linear Algebra, Wiley Eastern, New 
Delhi, 1983 
S.K.Jain, A. Gunawardena and P.B.Bhattacharya, Basic Linear Algebra with Maatlab., Key College 
Publishing (Springer- Verlag), 2001 
Shanti Narayan, A Text Book of Matrices, S.Chand & Co., New Delhi 
Lischutz, 3000 Solved Problems in Linear Algebra, Schaum Outline Series, Tata McGraw-Hill.
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UNIT – II 

SSYYSSTTEEMM  OOFF  LLIINNEEAARR  EEQQUUAATTIIOONNSS  

2.0  Introduction 
2.1 Objectives 
2.2 System of Linear Equations 

2.2.1    System of Non-homogeneous Linear Equations 
2.2.2    System of Homogeneous Linear Equations 

2.3  Orthogonal and Unitary Matrices 
2.4 Summary 
2.5 Key Terms 
2.6 Question and Exercises 
2.7 Further Reading 

2.0 INTRODUCTION 
 In this chapter we will use these concepts to study the solutions of systems of linear equations. Here, we 
will concentrate on the solution of system of homogeneous as well as non-homogeneous linear 
equations. We also learn orthogonal and unitary matrices. 

2.1 OBJECTIVES 
After going through this unit you will be able to: 
• Determine whether the system of non homogeneous and homogeneous linear equation is consistent 

or inconsistent.. 
• Solve non homogeneous and homogeneous system of linear equations. 

2.2 LINEAR SYSTEM OF EQUATIONS 
2.2.1 System of Non Homogeneous Linear Equation 
If 
  a11 x1 + a12 x2 + … + a1n xn = b1 
  a21 x1 + a22 x2 + … + a2n xn = b2 
  ……………………………….     …(1) 
  ………………………………. 
  am1 x1 + am2 x2 + … + amn xn = bn 

be given system of m linear equations then (1) may be written as 

   

⇒ AX = B  and C = [A : B] =  
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then [A : B] or C is called augmented matrix.  Sometime we also write A : B for [A : B] 
Consistent Equations. 

(i) If rank of A = rank of [A : B] and there is unique solution when rank of A=rank of [A : B]=n 
(ii) rank of A = rank of [A : B] = r < n. 

Inconsistent Equations. 
 If rank of A ≠ rank of [A : B] i.e. have no solution. 
Example 1.  Discuss the consistency of the following system of equation  
2x + 3y + 4z = 11,  x + 5y + 7z = 15,  3x + 11y + 13z = 25, if consistent, solve. 

Sol. The augmented matrix [A : B] =  

R12 operation is done so ~  

Next operating R2
 → R2 − 2R1 and R3 → R3 − 3R1, we get 

~  

Again, operating R2 → −  R2 and R3 → −  R3, we get 

   ~  

Next operating R3 → R3 −R2, we get 

   ~   

 ⇒          …(M) 

 From which we get rank of A = 3 as well as rank of A : B = 3.  Hence the system of equations is 

consistent and has unique solution  ⇒ z = 4 

And y + z =  ⇒ y + × 4 =  ⇒  y = −  = −3 

And from (M), we have x + 5y + 7z = 15 ⇒ x = 2 
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i.e.  we have the solution x = 2,  y = −3 and z = 4, which is the required result.  
 Example 2.  Test the following equations for consistency and hence solve these equations 2x − 
3y + 7z = 5,  3x + y − 3z = 13 and 2x + 19y−47z = 32.  
 Sol. The above equations may be written as AX = B. 

    

Operating R2 → 2R2 − 3R1 and R3 → R3 − R1, we get 

    

Next, we operate R3 → R3 − 2R2 

     

This indicate the rank of  A = 2 which is less than 3 (the number of variables) i.e. 
ρ(A) = 2 < 3 
So, the given equations are not consistent and so infinite number of solutions can be obtained. 
Example 3.  Show that if λ ≠ −5, the system of equation 3x − y + 4z = 3, x + 2y − 3z = −2 and 
 6x + 5y + λz = −3 have a unique solution.  If λ = −5, show that the equations are consistent.  
Determine the solution, in each case. 
Sol. The given equations are  
  3x − y + 4z = 3, 
  x + 2y − 3z = −2       …(1) 
and  6x + 5y + λz = −3 
 

If A = ,  X =   and B =  such that AX = B from (1) 

Then augmented matrix A : B =  

Operating R12(i.e. interchanging R1 and R2) 

     A : B =  

Now operating R2 − 3R1 [i.e. R2, 1(−3)] and R3, 1(−6) i.e. R3 − 6R1, we get 
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    A : B ~  

Next, R3 − R2[(i.e. R3, 2(−1)], we get 

   ~       …(2) 

If λ = − 5, then rank of A becomes ρ(A) = 2 which is less than 3, (the number of unknowns) and hence 
the equations will be consistent and will have infinite number of solutions 

Next, operating, R1 + R, we get 

  ~  from this matrix, if λ ≠ −5 

then rank is 3 and the equation will be consistent and we get 

  x +   ;  −7y + 13z = 9 and (λ + 5)z = 0  i.e. z = 0 

⇒ −7y = 9 ⇒ y = −   and x + 0 =   i.e. x = . 

i.e. unique solution is x = ,  y = − ,  z = 0, which is required result. 

If λ = −5, then from (2), we have x + 2y − 3z = −2, −7y + 13z = 9   …(3) 
If we take z = k than from (3),  

y =   and  z =  

Example 4.  Examine whether the following equations are consistent and solve them if they are 
consistent  2x + 6y + 11 = 0,  6x + 20y − 6z + 3 = 0 and  
6y − 18z + 1 = 0. 
Sol. The above equations may be written in the form  

 AX = B which is     …(1) 

Now the augmented matrix may be written as  

     A : B =     …(2)  

Operating R2 → R2 − 3R1, we get 
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     A : B ~  

Now, operating R3 → R3 − 3R2, we get 

   ~  

Hence rank of A = ρ(A) = 2 and ρ(A : B) = 3.  So, ρ(A) = 2 < 3 (number of variables).  This indicated 
that given equation are in consistent and so it has no unique solution. 
Example 5.  Solve the following system of equations by matrix method x + y + z = 8,  x − y + 2z = 6  
and 3x + 5y − 7z = 14. 
Sol. The above equations written in the form AX = B. 

where  A =  

So, we may write augmented matrix as  

        A : B =     …(1) 

Operating R2 → R2 − R1 and R3 → R3 − 3R1, we have  

     A : B ~      …(2) 

Again R3 → R3 + R2, we have  

   ~   

this implies that 
x + y + z = 8 

     −2y + z = −2      …(3) 
and             −9z = −12  

⇒ z =   and 2y = z + 2 =  + 2 =   ∴ y =  

Using 1st equation of (3), we get x + y + z = 8 

⇒  x +  = 8  ⇒ x = 8 − 3 = 5 

From (2) we see that ρ(A) = 3 = number of variables so, the system of equations are consistent and 

solutions are x = 5, y = . 
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Example 6.  Determine for what values of λ and µ the following equations have (i) no solution ii) a 
unique solution (iii) infinite number of solution :  x + y + z = 6,  x + 2y + 3z = 10  and x + 2y + λz = µ. 
Sol. The above equations may be written in the form AX = B.   

i.e.   

The augmented matrix [A : B] =  

Operating R2 → R2 − R1 and R3 → R3 − R1, we get 

   ~  

Again operating R3 − R2, we get 

   ~  

⇒we get x + y + z = 6,  y + 2z = 4 and (λ − 3)z = µ − 10. 
(i) If R(A) ≠ R[A : B] i.e. if λ − 3 = 0 and µ − 10 ≠ 0, then rank of A ≠ rank of [A : B].  Since ρ(A) 

= 2 and ρ(A : B) = 3.  The equation have no solution. 
(ii) The equations have unique solution if rank of A = rank of [A : B] = 3, i.e. if λ − 3 ≠ 0 and µ − 3 

≠ 0. 
(iii) If ρ(A) = ρ(A : B) = 2 i.e. when λ − 3 = 0 and µ − 10 = 0 i.e. when λ = 3 and              µ = 10.  

Then these are infinite number of solution. 
2.2.2 System of Homogeneous Linear Equations 
If 
  a11 x1 + a12 x2 + … + a1n xn =  
  a21 x1 + a22 x2 + … + a2n xn =  
  ……………………………….     …(1) 
  ………………………………. 
  am1 x1 + am2 x2 + … + amn xn =  
be given system of m linear equations then (1) may be written as  

 

Here A is called the coefficient matrix and the given system of equations  is called linear 
homogeneous system of equations. 
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Working rule for determining solution of m homogeneous equations in n variables. 
Firstly we find the rank of coefficient matrix A. Then 
1.   There is only a trivial solution which is . 
2.  A can be reduced to a matrix which has (n-r) zero rows and r non zero rows and if so the 
system is consistent and has infinite number of solutions. 
Thus, the given system of equations has a non- trivial solution iff  

Example 1: Solve the following system of equations 

   

Solution. Writing the given equations in the matrix form, we have 

  

or AX=O, where  

Operating  

  

Operating  

Operating  

 

= number of variables and hence the given system of equations has only trivial solution, x = 
y = z = 0. 
Example:  Solve the following system of equations: 

 

Solution: Writing the given equations in the matrix form, we have 

1 2 n x =x =.....=x =0 if ρ(A) = n
ρ(A) < n

 A 0=

x - y + z = 0
x + 2y - z = 0
2x + y + 3z = 0

1 -1 1 0
1 2 -1 0
2 1 3 0

x
y
z

     
     =     
          

1 -1 1
A 1 2 -1

2 1 3

 
 =  
  

2 2 1 3 3 1,R R +(-R ) and R R +(-2)R→ →

1 -1 1
A 0 3 -2

0 3 1

 
 
 
  



3 3 2R R +(-R ),→
1 -1 1

A 0 3 -2
0 0 3

 
 
 
  



2 2 3 3
1 1R R and R R
3 3

   → × → ×   
   

1 -1 1
A 0 3 -2/3

0 0 1

 
 
 
  



 (A)=3ρ∴

x - y + 2z - 3w = 0
3x + 2y - 4z + w = 0
4x - 2y + 9w = 0
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or AX=O, where   

Operating  

 

Operating , 

 

Operating  

 

, Here n = 4 (the number of unknowns) 
Now . Thus the system of equations has infinite solutions. The solutions will contain 4 – 3=1 
arbitrary constant. 
Equation corresponding to the matrix are 

    

From (3),             

 From (2),  

 From (1),  

Putting w = k, we get , which is the general solution, where k is an arbitrary 

parameter. 

0
1 -1 2 -3

0
3 2 -4 1

0
4 -2 0 9

0

x
y
z
w

   
     
     =     
      

   
1 -1 2 -3

A 3 2 -4 1
4 -2 0 9

 
 =  
  

2 2 1 3 3 1R R - 3R and R R - 4R ,→ →

1 -1 2 -3
A 0 5 -10 10

0 2 -8 21

 
 
 
  



2 2
1R R
5

 →  
 

1 -1 2 -3
A 0 1 -2 2

0 2 -8 21

 
 
 
  



3 3 2R R - 2R ,→

1 -1 2 -3
A 0 1 -2 2

0 0 -4 17

 
 
 
  



 (A)=3ρ∴

(A)< 4ρ

x - y + 2z - 3w = 0 (1)
y - 2z + 2w = 0 (2)
 - 4z + 17w = 0 (3)

17z =
4

w

∴
17 13y - 2 0  =
2 2

w w y w+ = ⇒

∴
13 17x - 3 0  =
2 2

w w w x w+ − = ⇒

13 17 =k,  = k, z = k
2 4

x y
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Check Your Progress 
1. Solve the following system of liear equation 

0
2 0

2 3 0

x y z
x y z

x y z

− + =
+ − =
+ + =

    

Ans. x = y = z = 0. 
2.  Find the values of a and b for which the following system of linear equations 
2 3
5 7 7

3

x by z
x y z

ax y z a

+ − =
+ + =
+ + =

. 

Ans. a = 1 and b = 3. 
2.3. Orthogonal and Unitary matrices 
2.3.1 Orthogonal Matrix 
Any square matrix A is said to be orthogonal if  '= 'AA A A=I , this indicates that the row vectors (column 
vectors) of an orthogonal matrix A are mutually orthogonal unit vectors. 
2.3.2 Unitary Matrix 
Any square A with complex elements is said to be unitary if θ θA.A =A A=I . 

2.4 SUMMARY 
• The matrix A and B together form a matrix termed as augmented matrix which is denoted as 

 [A : B] =  

• The system of linear equation is consistent if the coefficient matrix A and the augmented 
matrix have the same rank i.e. . 

• If A is a non singular square matrix of order n and X,B are matrices of order , then the system 
possesses a unique solution. 

2.5  KEY TERMS 
• System of Non Homogeneous Linear Equation: 
Consistent Equations. 
(i)  If rank of A = rank of [A : B] and there is  
unique solution when rank of A = rank of [A : B] = n 
(i) rank of A = rank of [A : B] = r < n. 

Inconsistent Equations. 
If rank of A ≠ rank of [A : B] i.e. have no solution. 
• System of Homogeneous Linear Equations: 

Firstly we find the rank of coefficient matrix A. Then 
1.   There is only a trivial solution which is . 

[ : ]A B



















mmn2m1m

2n22221

1n11211

b:a...aa
............

b:a...aa
b:a...aa

AX B=
[ : ]A B ( ) [ : ]A A Bρ ρ=

( 1)n×
AX B=

1 2 n x =x =.....=x =0 if ρ(A) = n
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2.  A can be reduced to a matrix which has (n-r) zero rows and r non zero rows and if so 
the system is consistent and has infinite number of solutions. 

Thus, the given system of equations has a non- trivial solution iff . 

2.6 QUESTION AND EXERCISE 
1.  Solve the system of linear equation: 

   , considering special the case when . 

2. Show that the only real value of for which the equations 

, have a non zero solution is 6. 

2.7 FURTHER READING 

L.N. Herstein Topic in Algebra, Wiley Eastern Ltd. New Delhi, 1975 
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P.B.Bhattacharya, S.K.Jain and S.R.Nagpaul, First Course in Linear Algebra, Wiley Eastern, New 
Delhi, 1983 
S.K.Jain, A. Gunawardena and P.B.Bhattacharya, Basic Linear Algebra with Maatlab., Key College 
Publishing (Springer- Verlag), 2001 
Shanti Narayan, A Text Book of Matrices, S.Chand & Co., New Delhi 
Lischutz, 3000 Solved Problems in Linear Algebra, Schaum Outline Series, Tata McGraw-Hill

ρ(A) < n

 A 0=

x+2y-2z=1
4x+2 y-z=2
6x+6y+ z=3

λ
λ
λ

2λ =

λ
x+2y+3z= x
3x+y+2z=
2x+3y+z=

y
z

λ
λ
λ
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STRUCTURE 
3.0 Introduction 
3.1 Unit Objectives  
3.2 Polynomial 
 3.2.1 Division Algorithm 
 3.2.2 Remainder Theorem 
 3.2.3 Factor Theorem  
3.3 General Equation 
 3.3.1 Degree of an Equation 
 3.3.2 Complete and Incomplete Equation 
 3.3.3 Root of an Equation 
3.4 Synthetic Division 
 3.4.1 To find the Quotient and Remainder, when f(x) is divided by (ax-b) 
3.5 Relation between roots and coefficient of an equation 
 3.5.1 Solution of polynomial equation having condition on roots 
 3.5.2 To find the condition that the root of given equation satisfy a given Relation  
 3.5.3 Common root of two equations 
 3.5.4 Equal or multiple roots of an equation  
3.6 Transformation of Equations 
 3.6.1 Roots multiplied by a given number 
 3.6.2 Reciprocal roots 
 3.6.3 Root diminished by a given number 
 3.6.4 Removal of term in general 
 3.6.5 Transformation of the cubic 
 3.6.6 Transformation of biquadratic 
 3.6.7 Removal of second and third term 
 3.6.8 Transformation in general  
 3.6.9 Equation of squared and difference of a cubic 
3.7 Summary 
3.8 Key Terms 
3.9 Question and Exercises 
3.10 Further Reading 

3.0  INTRODUCTION 
In this unit, we will learn synthetic division . We will also find the relation between the roots and the co-
efficient of an equation. In this unit we will transform equations in another equations whose roots are 
related. Transformation of an equation into another is a very useful as we can connect the roots of the 
new equation with that of the given equation or convert the co-efficient of the new equation in particular 
forms. Also the transformed equation may be easier to solve and having solved the transformed equation 
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we can find out the roots of the given equation with the help of the relation between the roots of the 
given equation and the transformed equation. 

3.1 UNIT OBJECTIVES 
After going through this unit, you will be able to: 
 Know about polynomials and their co-efficient, terms and value.  
 Know about degree and roots of complete and incomplete equations.  
 Learn synthetic division. 
 Find the relation between the roots and co-efficient of an equation.  
 Find a condition so that the roots of a given equation satisfy a given relation and the common 
 roots of two equations. 
 Find multiple roots of an equation and the common roots of two equations. 
 Transform an equation into another having roots with sigh.  
 Changed, roots multiplied by a number, roots as the reciprocal of the roots of the given 
 equation.  
 Remove the fractional co-efficient removed of the given equation. 
 Diminish the roots of an equation by a given number. 
 Remove particular terms of the given equation . 
 To find an equation having roots as squared differences of the roots of the equation x3. 
 To find an equation having roots as squared differences of the roots of the equation.  

 3.2 POLYNOMIAL 
An expression in x of the form  where are constants known as the 
coefficients and x is a variable. We shall denote a polynomial by or  etc. A polynomial 

is said to be of degree n when .  

 If all the coefficients  in  are real then polynomial is said to be real 
 polynomial. 
 If all the coefficients  in  are zero then polynomial is said to be zero 
 polynomial. 
 If we substitute x=a in  then the number  is called value of the polynomial  
 for x=a. 
 The number x=a is called zero of the polynomial   if and only if . 
 The highest index of variable x occurring in the terms of  polynomial  
 is called degree of .  
Example:  The polynomial  is of degree three. 
3.2.1 Division Algorithm 
If  and  are two nonzero polynomial, then there exist unique polynomial  and such 
that , where is either a zero polynomial or degree of < degree of . 
Where is called quotient and is called remainder when  is divided by .  
 Degree of = degree of - degree of ( )g x . 
 If degree of =1 then, either =0 or degree of is zero means a constants polynomial. 

1
0 1 ...n n

na x a x a−+ + + 0 1, ,..., na a a
( )f x ( )g x

1
0 1( ) ...n n

nf x a x a x a−= + + + 0 0a ≠

0 1, ,..., na a a ( )f x

0 1, ,..., na a a ( )f x

( )f x ( )f a ( )f x

( )f x ( ) 0f a =

( )f x
( )f x

2 3( ) 5 7 3f x x x= + +

( )f x ( )g x ( )q x ( )r x
( ) ( ). ( ) ( )f x q x g x r x= + ( )r x ( )r x ( )g x

( )q x ( )r x ( )f x ( )g x
( )r x ( )f x

( )g x ( )r x ( )r x
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2.2.2  Remainder Theorem 
Theorem 2.1: If a polynomial  is divided by x-a, then the remainder is equal to . 
 Proof: Let  be quotient and R be the remainder then using division algorithm for polynomial 

 and x-a, we have  
  

By putting x=a, we get 
=Remainder 

Example 1: Find the remainder when polynomial  is divided by x+2. 
Sol:  
Comparing x+2 with x-h, we get h=-2 

 Now Remainder R= =    [ ] 
=  
=32+8-24-8-8=0 
Thus remainder is zero. 
Note: When Remainder R=0, we say that is exactly divisible by x+2. 
2.2.3 Factor Theorem  
Theorem 2.2: If h is a root of the equation f(x)=0, then (x-h) is a factor of f(x) and conversely. 
Proof: Using Division algorithm for f(x) and (x-h), we have 
f (x)=q(x)(x-h)+R    (1) 
where q(x) is quotient and R is remainder. 
Now as h is a root of equation f(x) =0 f(h)=0 (2) 
from (1), we have 
f(h)= q(h)(h-h)+R 
f(h)=R, but from (2) 
R=0, using in (1), we have 
f(x)=q(x)(x-h) , this imply (x-h) is factor of f(x). 
Converse: Do yourself. 

3.3 GENERAL EQUATION 
If  is a polynomial then =0 is called general equation. 
3.3.1 Degree of an Equation: 
The degree of an equation is highest index of variable x occurring in the terms of polynomial 
equation .  The polynomial equation of 1st degree, 2nd degree, 3rd degree, 4th degree, are 
respectively known as Linear, Quadratic, Cubic, biquadratic Equation.  
3.3.2 Complete and Incomplete Equations 
A General Equation of degree n is said to be complete if it contains all power of the variable x from 0 to 
n. For example is complete equation of third degree. 
If any of the powers of the variable are missing from an equation of degree n is called incomplete 
equations. For example is incomplete equation of third degree. [ The Term  
is missing.]  

( )f x ( )f a
( )q x

( )f x
( ) ( )( )f x q x x a R= − +

( ) ( )( ) ( )f a q a a a R R f a= − + ⇒ =
4 3 22 6 4 8x x x x− − + −

4 3 2( ) 2 6 4 8f x x x x x= − − + −

∴ ( )f h ( 2)f − 2h = −

4 3 22( 2) ( 2) 6( 2) 4( 2) 8− − − − − + − −

( )f x

⇒

( )f x ( )f x

( ) 0f x =

( ) 0f x =

3 2
0 1 3 4 0a x a x a x a+ − + =

3 2
0 1 4 0a x a x a+ + =  3a x−
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3.3.3 Root of an Equation 
The value of x for which  vanishes is called root of equation .For example if , then 
h is called root of the equation . 

3.4 SYNTHETIC DIVISION 
It is a rule of coefficient detached with the help of which we can find quickly the quotient and the 
remainder when a polynomial f(x) is divided by a polynomial of the form x-a or ax+b ( ) 
The rule is explained with help of a example: 
Let  is divided by  
(a) In the first line write down in descending order the co-efficient 3, -5, 10, 11 and -61  of  given 
equation (coefficient of missing terms are to be written as       zeros). 
(b) Put the divisor (x-3) =0 and find the value of x i.e., x=3, which is called multiplier and may be 
written at the left hand corner separated by a vertical line . 

     3    3 -5 10 11 -61 
   9 12 66 231 
  

 3 4 22 77 170=Remainder 

Hence the remainder=170 and the quotient is . 
3.4.1 To find the Quotient and Remainder, when   is divided by . 

The divisor can be written as  

Divide  by , let  be the quotient and R the remainder. 

  

This shows that when  is divided by  instead of  , the remainder R remain 

unchanged, whereas the quotient is to be divided by “a ” the coefficient of x in the divisor . 
Example 2: Find the quotient and remainder, when  is divided by . 

Sol. The divisor can be written as  

We first divide by . 

Put  is a multiplier. 

Write down the co-efficient of the given polynomial in descending order and write down zero 
coefficient in place of missing terms i.e., 

( )f x ( ) 0f x = ( ) 0f h =

( ) 0f x =

0a ≠

4 3 23 5 10 11 61x x x x− + + − 3x −

3 23 4 22 77x x x+ + +
( )f x ( )ax b−

ba x
a

 − 
 

( )f x bx
a

 − 
 

( )q x

∴
( ) 1( ) ( ). ( ). . ( )( )b ax bf x q x x R q x R q x ax b R

a a a
− = − + = + = − + 

 

( )f x ( )ax b− bx
a

 − 
 

( )q x ( )ax b−
4 22 5 11 7x x x− + − (2 3)x −

(2 3)x − 32
2

x − 
 

3
2

x − 
 

3 30
2 2

x x− = ∴ =
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    2 0 -5 11 -7 

   3  -    

2 3 -          

This gives the remainder and quotient when  is divided by . 

Therefore, the remainder and quotient when  is divided by .  

Required Remainder=   [Remainder remain same] 

Required quotient=  

   = . 

Problems to Check Your Progress  
1. Using synthetic division find out    , where . 

2. Given that -4 is a root of the equation , find the other roots. 

3.5  RELATION BETWEEN THE ROOT AND COEFFICIENT OF AN EQUATION. 

Let the given equation be  
 

Let be its n roots. 

. 
Now equating the two expressions for the polynomial , we have  

= . 

= … (1) 

where,  = the sum of all the roots. 

 = the sum of product of the roots taken two at a time. 

= the sum of the products of the roots taken three at a time.  

Equating the co-efficient of like powers of x on both sides of (1), we get  

   

 

3
2

9
2

3
4

123
8

1
2

41
4

67
8

( )f x 3
2

x − 
 

( )f x ( )2 3x −

67
8

1 ( )
2

q x

3 2 3 21 1 41 3 1 41(2 3 )
2 2 4 2 4 8

x x x x x x+ − + = + − +

(2)f 4 2( ) 12 40 71f x x x x= − + −
3 22 6 7 60 0x x x+ + + =

1 2
0 1 2 1( ) ...... 0n n n

n nf x a x a x a x a x a− −
−= + + + + + =

1 2 3, , ,...., nα α α α

0 1 2( ) ( )( )...( )nf x a x x xα α α∴ = − − −

( )f x
1 2

0 1 2 1......n n n
n na x a x a x a x a− −
−+ + + + + 0 1 2( )( )...( )na x x xα α α− − −

1 1 1
0 1 1 2 1 1 2 1 1 2..... ( 1) ..n n n n n

na x x x xα α α α α α α α α α− − − − + − + + − ∑ ∑ ∑
1α∑

1 2α α∑
1 2 3α α α∑

1
0 1 1 1

0

;aa a
a

α α− = ⇒ = −∑ ∑

2 2
0 1 2 2 1 2

0

( 1) ;aa a
a

α α α α− = ⇒ = −∑ ∑
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Thus, above results gives the required relations between the roots and coefficients of the equation
. 

Sum of the products of roots taken r at a time is  

Particular Case: 
(i) If α, β are roots of the equation 

, then  and  

(ii) If and  are roots of the equation 

, then  

,  

(iii) If and  are roots of the equation 

, then  

,  and . 

3.5.1 Solution of Polynomial Equation having Condition on the Roots 
We can solve given polynomial equation with the help of relations , ….., where  denotes 

the roots of given equation.  
In case of cubic equation: 
(i) If the roots are given in A.P. can be taken as . 

(ii) If the roots are given in G.P. can be taken as . 

In case of bi-quadratic equation: 
(i) If the roots are given in A.P. can be taken as . 

(ii) If the roots are given in G.P. can be taken as . 

Example 3: Solve the equation , the sum of two of  the roots being zero. 
Solution: The given equation is  
Let the roots be  such that  

Now   

3 3
0 1 2 3 3 1 2 3

0

( 1) ;aa a
a

α α α α α α− = ⇒ = −∑ ∑

0 1 2 3 1 2 3
0

( 1) ...... ...... ( 1) ;n n n
n n n

aa a
a

α α α α α α α α− = ⇒ = −

( ) 0f x =

r+1
1 2 3

1

coeff. of T... ( 1)
coeff. of T

r
rα α α α = −∑

2ax 0bx c+ + =
b
a

α β+ = −
c
a

αβ =

,α β γ

3 2ax 0bx cx d+ + + =
b
a

α β γ+ + = −

2( 1) c
a

αβ βγ γα+ + = − 3( 1) d
a

αβγ = −

, ,α β γ δ

4 3 2ax 0bx cx dx e+ + + + =
b
a

α β γ δ+ + + = −

2( 1) c
a

αβ βγ γδ δα+ + + = − 3( 1) d
a

αβγ βγδ γδα+ + = − 4( 1) e
a

αβγδ = −

α∑ 21
α α∑ iα

, ,α β α α β− +

, ,α α αβ
β

3 , , , 3α β α β α β α β− − + +

3
3 , , ,α α αβ αβ

β β
3 24 16 9 36 0x x x+ − − =
3 24 16 9 36 0x x x+ − − =

, ,α β γ 0α β+ =

16 4
4

α β γ+ + = − = −
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Since    
Thus one root of equation is -4 and hence x + 4 is a factor of given equation 
Dividing the given equation by x + 4, we have 

Depressed equation is  

Hence the roots are -4, . 

Check Your Progress 
1. Solve the equation 3 212 39 28 0x x x− + − = the roots being in A.P. 
Ans. Roots are 1, 4, 7. 
2. Solve the equation 3 23 26 52 24 0x x x− + − = , the roots being in G.P. 

Ans. Roots are 2
3

, 2, 6. 

3.5.2 To find the condition that roots of given equation satisfy a given relation. 
Example 4: Find the condition that one root of the equation be equal to the sum 
of the other two. 

Solution: The given equation is   (1) 
Let the roots of the equation be  such that  

From (1),  

But is a root of (1) 

 

or  

or  
which is the required condition. 

3.5.3 Common Roots of Two Equations 

Let  and  be two equations of degree n and m respectively. 

Let  (r < n, r < m) be their common roots. 

Then both  and are divisible by which is, 

therefore, the H.C.F of  and . 

Hence the common roots of the two equations such as and are given by , 

where  is H.C.F. of   and . 

0 4α β γ+ = ⇒ = −

2 2 9 34 9 0
4 2

x x x− = ⇒ = ⇒ = ±

3
2

±

3 2 0px qx rx s+ + + =

3 2 0px qx rx s+ + + =

, ,α β γ α β γ= +

2
q q q
p p p

α β γ α α α+ + = − ⇒ + = − ⇒ = −

2
q
p

α = −

3 2

0
2 2 2
q q qp q r s
p p p

     
∴ − + − + − + =     

     
3 3 22 4 8 0q q pqr p s− + − + =

3 24 8 0q pqr p s− + =

( ) 0nf x = ( ) 0mf x =

1 2 3, , ,....., rα α α α

( ) 0nf x = ( ) 0mf x = 1 2( ) ( )( )....( )rx x x xϕ α α α= − − −

( )nf x ( )mf x

( ) 0nf x = ( ) 0mf x = ( ) 0xϕ =

( )xϕ ( )nf x ( )mf x
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3.5.4 Equal or Multiple Roots of an Equation 

A root  is said to be multiple root or repeated root of an equation   if  occurs more than 

once in the roots of the equation . If is repeated m-times then will be roots of   

repeated m-1 times, where is differential of   with respect to x. 
Rules to find multiple roots of an equation: 
To find the multiple root of an equation : 

(i) Find  

(ii) Find the H.C.F of   and .Let it be . 
(iii) Put  and solve it. 
(iv) If a root  of equation  is repeated r times, then the same root   will be repeated r+1 
times in the equation . 
Cor. 1. If  is double root of the equation , then we have and . The 
required condition will be obtained by eliminating  from the equation and . 
Cor.2. If  is triple root of the equation , then we have , and  

. The required condition will be obtained by eliminating  from the equation , 
and . 

Check Your Progress 
1. Solve the equation 3 23 19 33 9 0x x x− + − = which has repeated roots. 

Ans.3, 3, 1
3

 

2. Solve the equation 5 3 215 10 60 72 0x x x x− + + − = by testing for equal roots. 
Ans. 2,2,2,-3 and -3. 

3.6 TRANSFORMATION OF EQUATIONS 
To transform an equation into another whose root shall be equal in magnitude but opposite in sign to 
those of the given equation. 
Let , , ……,  be the root of the equation  

   (1) 

We will find out an equation whose roots are 1α− , 2α− , 3α− ……, nα− . 
If the new equation is in y then the functional relation between the roots of the equation is, 
y=-x or x=-y 
Putting the value of x in (1), we get ( ) 0f y− =  

1 2
0 1 2 1( ) ( ) ( ) .... ( ) 0n n n

n na y a y a y a y a− −
−− + − + − + + − + =  

1 1 2 2
0 1 2 1( 1) ( 1) ( 1) .... ( 1) 0n n n n n n

n na y a y a y a y a− − − −
−− + − + − + + − + =  

Since n can be even as well as odd, we cannot conclude regarding the sign of  ( 1)n− , 1( 1)n−−  etc. 

So multiplying throughout by ( 1)n− , we have  

α ( ) 0f x = α

( ) 0f x = α α ( ) 0f xι =

( ) 0f xι = ( ) 0f x =

( ) 0f x =

( )f xι

( )f x ( )f xι ( )xϕ
( ) 0xϕ =

α ( ) 0xϕ = α
( ) 0f x =

α ( ) 0f x = ( ) 0f α = ( ) 0f ι α =

α ( ) 0f α = ( ) 0f ι α =

α ( ) 0f x = ( ) 0f α = ( ) 0f ι α =

( ) 0f ιι α = α ( ) 0f α =

( ) 0f ι α = ( ) 0f ιι α =

1α 2α 3α nα
1 2

0 1 2 1( ) .... 0n n n
n nf x a x a x a x a x a− −
−= + + + + + =
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2 2 1 1 2 2 2 1

0 1 2 1( 1) ( 1) ( 1) .... ( 1) ( 1) 0n n n n n n n n
n na y a y a y a y a− − − − +
−− + − + − + + − + − =  

But    2( 1) 1n− =  

   2 1 2 1( 1) ( 1) ( 1) 1n n− −− = − − = −  
…………………………………………………. 
   1 1 2 1( 1) ( 1) ( 1) ( 1)n n n+ − −− = − − = −  
Thus the required equation is 

1 2 1
0 1 2 1.... ( 1) ( 1) 0n n n n n

n na y a y a y a y a− − −
−− + + + − + − =  

Expressing the equation in term of variable x, we get 
1 2 1

0 1 2 1.... ( 1) ( 1) 0n n n n n
n na x a x a x a x a− − −
−− + + + − + − =  

Which is the required transformed equation.  
3.6.1 Root Multiplied by a Given Number: 
To transform an equation into another whose roots are m times those of the given equation. 
Let 1α , 2α , 3α ……, nα be the roots of the given equation 

1 2
0 1 2 1( ) .... 0n n n

n nf x a x a x a x a x a− −
−= + + + + + =  

It is required to find out an equation whose roots are m times the roots of one (1) i.e., we require an 
equation whose roots are 1mα , 2mα , 3mα ……, nmα . 
If the new equation is in y, then the functional relation between the roots of the two equation is 

y = mx or   yx
m

=  

Putting this value of x in (1), we get 
yf =0
m

 
 
 

 

i.e.,  
1 2

0 1 2 1..... 0
n n n

n n
y y y ya a a a a
m m m m

− −

−
       + + + + + =       
       

 

Multiplying throughout by nm  , we get 
1 2

0 1 2 1..... 0n n n
n na y a y a y a y a− −
−+ + + + + =  

Expressing it in x, we have 
1 2

0 1 2 1..... 0n n n
n na x a x a x a x a− −
−+ + + + + =  

Which is the required transformed equation. 
Note: 1.  In order to form an equation whose roots are m times the roots of the given equation, multiply 
the successive coefficients beginning with the coefficient of 1nx − by m, 2m , 3m ...., nm .respectively. If 
any power of x is missing it should be regarded as supplied with a zero coefficient. 

2.  If the roots of the given equation are to be divided by m, it means they are to be multiplied by 1
m

. 

3.6.2 Reciprocal Roots 
 We will transform an equation whose roots are reciprocal of the roots of the given equation. 
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 Consider an equation 1 2
0 1 2 1( ) .... 0n n n

n nf x a x a x a x a x a− −
−= + + + + + =   (i) 

Let 1α , 2α , 3α ……, nα be the roots of the given equation. We will find out an equation whose roots are

1

1
α

,
2

1
α

,
3

1
α

,……,
1

nα
 

Let us suppose that the new equation formed will be in y. Then y
x

or 1x
y

= is the functional relation 

between the roots of the two equations. 
By putting this value of x in (1), we get  

1 2

0 1 2 1
1 1 1 1 1( ) .... 0

n n n

n nf a a a a a
y y y y y

− −

−

       
= + + + + + =       

       
 

Multiplying throughout by ny , we get 
2 1

0 1 2 1.... 0n n
n na a y a y a y a y−
−+ + + + + =   

Expressing it in x, we have 
2 1

0 1 2 1.... 0n n
n na a x a x a x a x−
−+ + + + + =  

Example 5:  Find an equation whose roots are equal in magnitude but opposite in sign to the equation 
5 4 3 211 7 16 12 15 0x x x x x+ + − − + = . 

Solution: We know that when we change x to –x, the signs of the coefficients of terms with odd powers 
of x change. 
Thus, the required equation is 5 4 3 211 7 16 12 15 0x x x x x− + − − + + =  
or     5 4 3 211 7 16 12 15 0x x x x x− + + − − =   
Example 6:  Find an equation whose roots are four times the roots of the equation 3 22 3 5 0x x x+ + + − =
. 
Solution. The given equation is 3 22 3 5 0x x x+ + − = . 
Since the given equation is complete, therefore, multiplying the successive terms by 0 1 2 34 , 4 , 4 , 4
respectively, we have 
  0 3 1 2 2 34 . 4 .2 4 .3 4 .5 0x x x+ + − =  
or  3 28 48 320 0x x x+ + − = . 
Which is the required equation. 
Example 7:  Remove the fractional coefficients from the equation 

4 3 21 5 2 1 0
2 3 3

x x x x+ − + − =  

Solution.  To remove the fractional coefficients, we multiply the roots of equation (1) by 6 which is the 
L.C.M of 2 and 3, the denominator of the fractional coefficients, which are prime to each other. 

Thus, the transformed equation is   4 3 2 2 3 41 5 26. 6 . 6 . 6 .1 0
2 3 3

x x x x+ − + − =  

or     4 3 23 60 144 1296 0x x x x+ − + − = . 
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Example 8:  Transform the equation into one whose roots are twice the reciprocals of the roots of the 
equation 4 3 23 6 2 4 0x x x x+ − + − =  
Solution. The given equation is 4 3 23 6 2 4 0x x x x+ − + − =  

Replacing x by 2
x

, we get 

4 3 22 2 2 23 6 2 4 0
x x x x

       + − + − =       
       

 

or  2 3 416 24 24 4 4 0x x x x+ − + − =  
or  4 3 26 6 4 0x x x x− + − − =  
Which is the required equation. 
Example 9:  Find the condition that the roots of the cubic 3 2 0x px qx r− + − = may be in H.P . Hence or 

otherwise solve the equation 3 26 11 6 1 0x x x− + − =  
Solution.  (i)  The given equation is 3 2 0x px qx r− + − =  
It is given that its roots are in H.P. 

Changing x to 1
y

 in (1), we get 
3 2

1 1 1 0p q r
y y y

     
− + − =     

     
 

i.e.   3 2 1 0ry qy py− + − =  
Clearly the roots of (2) are in A.P. Let the roots of (20 be a – d, a, a + d. 

Then sum of the roots = 3a=
3

q qa
r r
⇒ =  

⇒  
3
qy
r

=   is one root of (2) 

⇒  
3 2

1 0
3 3 3
q q qr q p
r r r

     − + − =     
     

 

or  
3 3

3 3 2
2 2

q q pq- + -1=0 i.e., q -3q +9pqr-27r =0
27r 9r 3r

 

∴ Required condition is 3 22q - 9pqr + 27r =0  

 The given equation is 3 26 11 6 1 0x x x− + − =  

Dividing by 6, we get 3 211 1 0
6 6

x x x− + − =  

Comparing (1) and (3), we get  11
6

p = , 1q =  and 6r =  

L.H.S of (3)= 3 22 9 27q pqr r− +  

=
211 1 12 9 (1) 27 0

6 6 36
     − + =     
     

 

This shows that equation (1) and (4) satisfy the same conditions. 
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∴  1 3 1
2

rx
y q

= = =  is one root of equation (4) 

∴ 1
2

x −  is a factor of L.H.S. of (4). 

By synthetic division,  

    1
2

    6 -11 6 -1 

          .....   -3 -4 1 
 
           6 -8 2 0 
∴ Depressed equation is 26 8 2 0x x− + =  
i.e.     23 4 1 0x x− + =  

or   1(3 1)( 1) 0 ,1
3

x x x− − = ⇒ =  

Hence the roots of (1) are 1, 1
2

, 1
3

. 

Check Your Progress 

1. Remove the fractional coefficient from the equation 4 3 21 5 2 1 0
2 3 3

x x x x+ − + − =  

Ans. 4 224 65 55 0x x x− + − = . 
2. Solve the equation 4 3 240 22 21 2 1 0x x x x− − + + =  if the roots are in H.P. 

Ans. 1 1 1, ,1,
5 2 4

− − . 

3.6.3 Root Diminished by a Given Number: 
We will transform an equation in to another equation whose roots will be the roots of the given equation 
diminished by h. 
 Consider an equation 1 2

0 1 2 1( ) .... 0n n n
n nf x a x a x a x a x a− −
−= + + + + + =  (i) 

Let 1α , 2α , 3α ……, nα be the roots of the given equation. We will find out an equation whose roots are

1 hα − , 2 hα − , 3 hα − ,……, n hα − . 
Let the new equation formed will be in y. Then y= x- h or x = y + h is the functional relation between 
the roots of two equations. 
By putting the value of x in (i), we get 

1 2
0 1 2 1( ) ( ) ( ) ( ) .... ( ) 0n n n

n nf y h a y h a y h a y h a y h a− −
−+ = + + + + + + + + + =  

Simplifying and arranging in descending power of y, we get 
1 2

0 1 2 1A A A .... A A 0n n n
n ny y y y− −
−+ + + + + =  

Where 0A , 1A ,....., An are constants to be determined. ... (ii)  Putting y = x – h in (ii) 
1 2

0 1 2 1( ) A ( ) A ( ) A ( ) .... A ( ) A 0n n n
n nf x x h x h x h x h− −
−∴ = − + − + − + + − + =  

L.H.S of this equation is identical with the L.H.S. of equation (i). 
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This shows that if f(x) is divided by (x-h), then the remainder is An  and the quotient is  
1 2 3

0 1 2 1A ( ) A ( ) A ( ) .... A 0n n n
nx h x h x h− − −
−− + − + − + + =  

If we divide this quotient by (x-h), then we get 1An− as the remainder and the second quotient is  
2 3 4

0 1 2 2A ( ) A ( ) A ( ) .... A 0n n n
nx h x h x h− − −
−− + − + − + + =  

Repeating this process n time, the nth remainder will be 1A and the nth quotient will be 0A  
By equating the coefficients of  nx in (i) and (iii), we get 0 0A a= . 
Thus, the division of f(x) successively by (x-h) we get An , 1An− ,....., 1A , 0A as the successive remainders 
and  0 0A ( )a=  as the last quotient. Then the transformed equation in x is 

1 2
0 1 2 1A A A .... A A 0n n n

n nx x x x− −
−+ + + + + = . 

2.6.4 Removal of terms in General 
We will remove a particular term from the transformed equation by decreasing the roots of the given 
equation by a suitable number. 
Consider an equation 1 2

0 1 2 1( ) .... 0n n n
n nf x a x a x a x a x a− −
−= + + + + + = .......(i) 

Suppose the roots of the equation (i) are diminished by h. 
Let the new equation formed will be in y. Then y= x – h or x = y + h is the functional relation between 
the roots of two equations. 
By putting the value of x in (i), we get 

1 2
0 1 2 1( ) ( ) ( ) ( ) .... ( ) 0n n n

n nf y h a y h a y h a y h a y h a− −
−+ = + + + + + + + + + =  

By applying binomial theorem and arranging the terms in the descending power of y, we get 
1 2 2

0 0 1 0 1 2

1
0 1 1

( 1)( ) ( 1) ...
2!

( .. )

n n n

n n
n n

n na y na h a y a h n a h a y

a h a h a h a

− −

−
−

− + + + + − + +  
+ + + + +

 

Now to remove any particular term we equate the coefficient of that term to zero and the values of h thus 
obtained will be the required numbers by which the roots are to be diminished to get the required 
transformed equation. 

Note: (i) To remove the second term: 0 1na h a+  or 1

0

ah
na

= −  

(ii) To remove the third term: 2
0 1 2

( 1) ( 1) 0
2!

n n a h n a h a−
+ − + =  

(iii)  To remove the fourth term, solve a cubic in h. To remove the last term, solve the equation ( ) 0f h = . 
3.6.5 Transformation of Cubic 
We will reduce the cubic 3 2

0 1 2 33 3 0a x a x a x a+ + + = to the form in which second term is missing and the 
coefficient of the leading term is unity, all other coefficients being integers. And we will find the 
relation between the roots of the transformed equation and the given equation. 
Consider an equation 3 2

0 1 2 3( ) 3 3 0f x a x a x a x a= + + + = .....(i) 
Suppose the transformed equation is in y. Then y = x – h or  y=x+h 
Let us diminish the roots of (i) by h by putting x = y + h  

3 2
0 1 2 3( ) ( ) 3 ( ) 3 ( ) 0f y h a y h a y h a y h a+ = + + + + + + =  
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Now, arranging the term in descending power of y, we get  
3 2 2 3 2

0 0 1 0 1 2 0 1 2 33( ) 3( 2 ) ( 3 3 ) 0a y a h a y a h a h a y a h a h a h a+ + + + + + + + + =  
Let us write this equation as  

3 2
0 1 2 33 3 0A y A y A y A+ + + =   ....(ii)    0 0[ ]A a=  

For removing the second term, take 0 1 0a h a+ =  or 1

0

ah
a

= −  

We have 
2

2 1 1 1
2 0 1 2 0 1 2

0 0 0

2 2a a aA a h a h a a a a h
a a a

      
= + + = − + − + = −      

      
  

2
20 2 1

0 2 1
0 0

Where H=a a a H a a a
a a
−

= = −  

Also, 
3 2

3 2 1 1 1
3 0 1 2 3 0 1 2 3

0 0 0

3 3 3 3a a aA a h a h a h a a a a a
a a a

     
= + + + = − + − + − +     

     
 

2 3
2 30 3 0 1 2 1

0 3 0 1 2 12 2
0 0

3 2 , where G= 3 2a a a a a a G a a a a a a
a a

− +
= = − +  

Now putting this value in (ii), we get 
3

0 2
0 0

3 0H Ga y y
a a

+ + =  

To make the coefficients of the leading term as unity, we divide this equation by 0a  

3
0 2 3

0 0

3 0H Ga y y
a a

⇒ + + =  

Multiplying roots by 0a , we get 3
03 0 where Z=aZ HZ G y+ + =  

This is the required transformed equation. If ' ' ', andα β γ be the roots of this transformed equation. Then 

0 0Z=a ( )y a x h= −    0[ Z=a and ( )]y y x h= −  

1 1
0 0 1

0 0

=a [ ]a ax a x a h
a a

 
+ = + = − 

 
  

' ' '
0 1 0 1 0 1; ;a a a a a aα α β β γ γ⇒ = + = + = + , where , andα β γ are the roots of equation (i). 

From (i), we have sum of the roots = 1

0

3a
a

α β γ+ + = −  

( )' 01
0 0

0

2
3 3

aaa a
a

α β γα α α α β γ
  + + ∴ = + = − = − −   

  
 

( ) ( )' '0 02 and 2
3 3
a aβ β α γ γ γ β α∴ = − − = − − . 

3.6.6 Transformation of Biquardatic 
We will reduce the cubic 4 3 2

0 1 2 3 44 6 4 0a x a x a x a x a+ + + + = to the form in which second term is 
missing and the coefficient of the leading term is unity, all other coefficients being integers. And we will 
find the relation between the roots of the transformed equation and the given equation. 
Consider an equation 4 3 2

0 1 2 3 4( ) 4 6 4 0f x a x a x a x a x a= + + + + = .....(i) 
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Suppose the transformed equation is in y. Then y = x - h or x = y + h 
Let us diminish the roots of (i) by h by putting x = y + h  

4 3 2
0 1 2 3 4( ) ( ) 4 ( ) 6 ( ) 4 ( ) 0f y h a y h a y h a y h a y h a+ = + + + + + + + + =  

Now, arranging the term in descending power of y, we get  
4 3 2 2 3 2

0 0 1 0 1 2 0 1 2 3
4 3 2

0 1 2 3 4

4( ) 6( 2 ) 4( 3 3 )
( 4 6 4 ) 0

a y a h a y a h a h a y a h a h a h a y
a h a h a h a h a
+ + + + + + + + +

+ + + + + =
 

Let us write this equation as  
4 3 2

0 1 2 3 44 6 4 0A y A y A y A y A+ + + + =   ....(ii)    0 0[ ]A a=  

For removing the second term, take 0 1a h a+  or 1

0

ah
a

= −  

We have 
2

2 1 1 1
2 0 1 2 0 1 2

0 0 0

2 2a a aA a h a h a a a a h
a a a

      
= + + = − + − + = −      

      
  

2
20 2 1

0 2 1
0 0

Where H=a a a H a a a
a a
−

= = −  

Also, 
3 2

3 2 1 1 1
3 0 1 2 3 0 1 2 3

0 0 0

3 3 3 3a a aA a h a h a h a a a a a
a a a

     
= + + + = − + − + − +     

     
 

2 3
2 30 3 0 1 2 1

0 3 0 1 2 12 2
0 0

3 2 , where G= 3 2a a a a a a G a a a a a a
a a

− +
= = − +  

and 
4 3 2

4 3 2 1 1 1 1
4 0 1 2 3 4 0 1 2 3 4

0 0 0 0

a a a aA =a h +4a h +6a h +4a h+ a =a - +4a - +6a - +4a - a
a a a a

       
+       

       
 

3 2 2 4
0 4 0 1 3 0 1 2 1

3
0

a 4 6 3= a a a a a a a a
a

− + −  

2 2 2 2 2
0 0 4 1 3 2 0 2 1 0

3 3
0 0

a ( 4 3 ) 3( ) I-3H= a a a a a a a a a
a a

− + − −
=  

where 2
0 4 1 3 2I 4 3a a a a a= − +  

Now putting these values in (ii), we get 
2

4 2 0
0 2 3

0 0 0
2

4 2 0
2 3 4

0 0 0

I-3H6 4 0

I-3H6 4 0

aH Ga y y y
a a a

aH Gy y y
a a a

+ + + =

⇒ + + + =
 

Multiplying roots by 0a , we get 4 2 2
0 06 4 ( I-3H ) 0 where Z=aZ HZ GZ a y+ + + =  

This is the required transformed equation. If ' ' ' ', , andα β γ δ be the roots of this transformed equation. 
Then 0 0Z=a ( )y a x h= −    0[ Z=a and ( )]y y x h= −  

1 1
0 0 1

0 0

=a [ ]a ax a x a h
a a

 
+ = + = − 
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' ' ' '

0 1 0 1 0 1 0 1; ; and a a a a a a a aα α β β γ γ δ δ⇒ = + = + = + = + , where , , andα β γ δ are the roots of 
equation (i). 

From (i), we have sum of the roots = 1

0

4a
a

α β γ δ+ + + = −  

( )' 01
0 0

0

3
4 4

aaa a
a

α β γ δα α α α β γ δ
  + + + ∴ = + = − = − − −   

  
 

( ) ( ) ( )' ' '0 0 03 , 3 and 3
4 4 4
a a aβ β α γ δ γ γ β α δ δ δ β α γ∴ = − − − = − − − = − − − . 

3.6.7 Removal of Second and Third Term 
Consider an equation 3 2

0 1 2 3( ) 3 3 0f x a x a x a x a= + + + = .....(i) 
Suppose the transformed equation is in y. Then y = x - h or x = y + h 
Let us diminish the roots of (i) by h by putting x = y + h  

3 2
0 1 2 3( ) ( ) 3 ( ) 3 ( ) 0f y h a y h a y h a y h a+ = + + + + + + =  

Now, arranging the term in descending power of y, we get  
3 2 2 3 2

0 0 1 0 1 2 0 1 2 33( ) 3( 2 ) ( 3 3 ) 0a y a h a y a h a h a y a h a h a h a+ + + + + + + + + =  

The second and third terms will be removed simultaneously if 0 1 0a h a+ =  or 1

0

ah
a

= −  and 

2
0 1 22 0a h a h a+ + =  

Putting the value of h in (ii), we get 
2 2 2

1 1 1 1
0 1 2 2

0 0 0 0

2
0 2 1

2 0 2 0

0

a a a aa a a a
a a a a

a a a

   
− + − + = ⇒ − + =   
   

⇒ − =

 

H=0⇒  is the required condition. 
Example 1: Diminish the roots of 5 32 10 8 0x x x− + − = by 5. 
Solution. The given equation is 5 32 10 8 0x x x− + − =  
In order to diminish the roots by 5 we have to divide the given equation successively by (x-5) 
Thus h (the multiplier) = 5. 
By successive application of synthetic division, we have 
                         5  2 0 -1 0 10 -18 
   ... 10 50 245 1225 6175     
   2 10 49 245 1235 6167     
   ... 10 100 745 4950      
   2 20 149 990 6185      
   .... 10 150 1495       
   2 30 299 2485       
   … 10 200 
   2 40 499        
   ... 10        
   2 50         
   ... 2 
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Check Your Progress 
1. Diminish the roots of equation 4 3 25 7 17 11 0x x x x− + − + = , by 4. 
3.6.8 Transformation in General 
Consider an equation ( ) 0f x =  

and let 1 2, ,...., nα α α be its roots. 

We will find out an equation whose roots are 1 2( ), ( ),...., ( )nφ α φ α φ α   where ( )xφ  is an algebraic 
function of x. Let us suppose that the new equation formed will be in y. Then the functional relation 
between the roots of the two equation is 

( )y xφ=         ......(ii) 
Now, we eliminate x from (i) and (ii) and get an equation F(y) = 0 which is the required transformed 
equation. 
Example 2: Find the equation whose roots are the squares of the roots of 3 0x qx r+ + = . 

Solution.  The given equation is 3 0x qx r+ + =      (1) 
Let its roots be , ,α β γ  

It is required to find out an equation whose roots are 2 2 2, ,α β γ . 

If the new equation is in y, then 2y=x       (2) 
Eliminating x between (1) and (2), we get 
  0xy xq r+ + =  
or  x(y+q)=-r        [Transposing] 

or  2 2 2x (y+q) =r        [Squaring] 

or  2 2y(y+q) =r        [ 2x y= ] 

or   2 2 2y(y +q +2yq)=r  

or  3 2 2y +2yq+q y-r 0=  
Which is the required equation. 
Example 3: If , ,α β γ  are the roots of the equation 3 2 0;x px qx r+ + + = form an equation whose roots 

are 1 1 1, ,α β γ
βγ γα αβ

− − − . 

Solution. Since , ,α β γ  are the roots of the equation 
3 2 0;x px qx r+ + + =          ..... (1) 

  pα β γ+ + = −        ..... (2) 
qαβ βγ γα+ + =        ..... (3) 

rαβγ = −         ...... (4) 
If the transformed equation is in y, then  

1y
r

α αα α α
βγ αβγ

= − = − = −
−

       [From (4)] 
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     = xx
r r
αα + = +         [ α is a root of (1) ] 

 = 1 ryi.e.   x=
r+1

rx
r
+ 

 
 

 

Putting this value of x in (1), we get 
3 3 2 2

3 2. . 0
( 1) ( 1) 1

r y r y ryp q r
r r r

+ + + =
+ + +

 

or     2 3 2 2 3( 1) ( 1) ( 1) 0r y pry r qy r r+ + + + + + =   

or 2 3 2 2 3( 1) ( 1) ( 1) 0r y pr r y q r y r+ + + + + + =  
Which is the required transformed equation. 
Example 4:   Form an equation whose roots shall be the squares of the roots of the equation 

3 23 6 1 0x x x+ + + = . 
Solution:  The given equation is 3 23 6 1 0x x x+ + + =   (i) 
Let the new equation be in y. Then 2y x=     (ii) 
From (i) and (ii), 3 6 1 0xy y x+ + + =  

( 6) (1 3 )x y y∴ + = +  
By squaring both sides, we get 

2 2 2 2 2( 6) (1 3 ) ( 36 12 ) (9 1 6 )x y y y y y y y+ = + ⇒ + + = + +  
3 23 30 1 0y y y+ + − = , which is the required equation. 

3.6.9 Equation of Squared Difference of a Cubic 
Equation whose roots are the squares of the differences of the roots of the equation 3x +qx+r=0  

Consider the cubic equation 3x +qx+r=0       (i) 
Let , ,α β γ  are the roots of the equation 

3 0;x qx r+ + =          ..... (1) 
  0α β γ+ + =         ...... (2) 

qαβ βγ γα+ + =        ....... (3) 
rαβγ = −         ....... (4) 

We have to find an equation whose roots are 2 2 2( ) , ( ) , ( )α β β γ γ α− − −  
If the transformed equation is in y, then  

2 2

2

2

( ) ( ) 4

[( ) ] 4

[0 ] 4 [ 0; ]

y

r r

α β α β αβ
αβγα β γ α
γ

α α β γ αβγ
α

= − = + −

= + + − −

= − − + + = = −

 

2 4 [ α is a root of (i)]ry x
x

⇒ = +   
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3 4 0x xy r⇒ − + =          ....((ii) 

Subtracting (ii) from (i), we get 
3( ) 3 0 rx q y r x

q y
+ − = ⇒ =

+
        ....(iii) 

 Putting this value of x in (i), we get 
3

3 3 4 0r r y r
q y q y

   
− + =   + +   

 

3 2 327 3 ( ) ( ) 0r qr q y r q y⇒ + + + + =  
3 2 2

3 2 2 3 2

( ) 3 ( ) 27 0
6 9 (4 27 ) 0

q y q q y r
y qy q y q r

⇒ + + + + =

⇒ + + + + =
 

which is the required equation. 
Equation whose Roots are Squares of the Differences of the Roots of the Cubic 
  2 2

0 1 2 33 3 0a x a x a x a+ + + = . 

Consider the cubic equation  2 2
0 1 2 33 3 0a x a x a x a+ + + =    ... (i) 

and let 1 2 3x ,x and x be the roots of this equation. 

We have to find an equation whose roots are 2 2 2
1 2 2 3 3 1(x - x ) , ( ) and (x )x x x− −  

By putting 2 2 3
0 1 0 2 1 0 3 0 1 2 1y=a , H=a and G=a 3 2x a a a a a a a a+ − − +  equation (i) reduces to  

 
3y 3Hy+G=0+         .... (ii) 

Let the roots of (ii) be , and α β γ . 

0 1 1 0 2 1 0 3 1

0 1 2

0 2 3

0 3 1

=a ; ;
( )
( )
( )

x a a x a a x a
a x x
a x x
a x x

α β γ
α β
β γ
γ α

∴ + = + = +

⇒ − = −

⇒ − = −

⇒ − = −

 

Let the new equation be in Z. Then 2( ) ( ) 4Z α β α β αβ= − = + −  

2 24 4[( ) ] ( ) Gαβγα β γ γ γ
γ γ

= + + − − = − +   [By (ii), 0 and =-Gα β γ αβγ+ + = ] 

2 24 4 [ γ is a root of (ii)]G Gy
y

γ
γ

= + = +   

3 4 0y Zy G⇒ − + =          ...... (iii) 
Subtracting (iii) from (ii), we get 

3G(3H+Z)y - 3G=0 y=
3H+Z

⇒  

Putting this value of y in (ii), 
33G 3G3H +G=0

3H+Z 3H+Z
   +   
   

 

3 2 2(3H+Z) +9H(3H+Z) +27G 0⇒ =  
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3 2 2 2 3Z +18HZ +81H Z+27(G +4H )=0⇒       ..... (iv) 

The roots of this equation are 2 2 2( ) , ( ) and ( )α β β γ γ α− − −  

i.e. 2 2 2 2 2 2
0 1 2 0 2 3 0 3 1a (x - x ) , ( ) and a (x )a x x x− −  

If the new equation is in t, then 2 2 2
1 2 0 1 22 2

0 0

1 1t = (x - x ) (x - x ) Za
a a

= =  

2
0Z=a t⇒  

By putting this value of Z in (iv), we get 
6 3 4 2 2 2 2 3

0 0 0a t +18a Ht +81a H t+27(G +4H )=0  
Which is the required equation. 
Example 5: Find the equation of squared difference of the roots of the equation 3 7 6 0x x− + = . 
Solution: The given equation  3 7 6 0x x− + =      .... (i) 
Let , ,α β γ  be the roots of the equation  

0
6

α β γ
αβγ

∴ + + =
= −

 

Now we have to form an equation whose roots are 2 2 2( ) , ( ) , ( )α β β γ γ α− − −  

If the new equation is in y, then 2( )y β γ= −  

or   2( ) 4y β α βγ= + −  

  
3

2 26 24 24(0 ) 4( ) αα α
α α α

+
= − − − = + =  

or  
3 24xy

x
+

=     [Replacing α by x] 

or  3 24xy x= +  

or  3 24 0x xy− + =       ....(ii) 
To eliminate x between (i) and (ii), subtracting (ii) from (i), we have 

7 18 0x xy− + − =  

or   18( 7) 18
7

x y x
y

− = ⇒ =
−

  

Putting this value of x in (1), we have 
3

18 187 6 0
7 7y y

   
− + =   − −   

 

or 2 35832 7(18)( 7) 6( 7) 0y y− − + − =  

or 2 3 25832 126[ 14 49] 6[ 343 21 147 ] 0y y y y y− − + + − − + =  

or 2 3 25832 126 1764 6174 6 2058 126 882 0y y y y y− + − + − − + =  

or 3 26 252 2646 2400 0y y y− + − =  

or 3 242 441 400 0y y y− + − = . 
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3.7 SUMMARY 
• If ( )f x  and ( )g x  are two nonzero polynomial, then there exist unique polynomial ( )q x  and ( )r x

such that ( ) ( ). ( ) ( )f x q x g x r x= + , where ( )r x is either a zero polynomial or degree of 
( )r x < degree of ( )g x . Where ( )q x is called quotient and ( )r x is called remainder when ( )f x  is 

divided by ( )g x .  
• If a polynomial ( )f x  is divided by x-a, then the remainder is equal to ( )f a . 
• If h is a root of the equation f(x)=0, then (x-h) is a factor of f(x) and conversely. 
• To transform an equation into another whose root shall be equal in magnitude but opposite in sign, 

change signs of coefficients of the terms with  odd powers of x in the  given equation. 
• In order to form an equation whose roots are m times the roots of the given equation, multiply the 

successive coefficients beginning with the coefficient of 1nx − by m, 2m , 3m ...., nm .respectively. If 
any power of x is missing it should be regarded as supplied with a zero coefficient. 

• We transform an equation 1 2
0 1 2 1( ) .... 0n n n

n nf x a x a x a x a x a− −
−= + + + + + =  in to another equation 

whose roots will be the roots of the given equation diminished by h. Then the transformed equation 
is 1 2

0 1 2 1A A A .... A A 0n n n
n nx x x x− −
−+ + + + + = ,where 0 0A a= , An , 1An− ,....., 1A are constants. 

3.8 KEY TERMS 

• Real Polynomial: A polynomial 1
0 1( ) ...n n

nf x a x a x a−= + + + is said to be real polynomial If all the 
coefficients 0 1, ,..., na a a  in ( )f x  are real. 

• Zero Polynomial: If all the coefficients 0 1, ,..., na a a  in ( )f x  are zero then polynomial is said to be 
zero polynomial. 

• Complete and Incomplete equation:A General Equation of degree n is said to be complete if it 
contains all power of the variable x from 0 to n. For example 3 2

0 1 3 4 0a x a x a x a+ − + = is complete 
equation of third degree. 

• Root of an Equation:The value of x for which ( )f x  vanishes is called root of equation ( ) 0f x = .For 
example if ( ) 0f h = , then h is called root of the equation ( ) 0f x = . 

3.9. QUESTIONS AND EXERCISES 

1. Given that -6 is a root of equation 3 22 17 42 0x x x+ − + = , solve it. 
2. From an equation with rational coefficients two of whose roots are 1 5  and 5-ii+ . 

3. Show that the equation 
2 2 2 2

.......A B C H K
x a x b x c x h

+ + + + =
− − − −

 has all real roots. 

4. Find an equation of the lowest degree with real coefficients which has 1+2i and 3-I as two of its roots. 
5. Solve the equation 4 3 24 6 4 5 0x x x x+ + + + = given that one root is i. 
6. If , ,α β γ  are the roots of the equation ( )( )( ) 1 0a x b x c x− − − + = , then prove that a,b,c are the roots of 
the equation ( )( )( ) 1 0x x xα β γ− − − + = . 
7. Solve the equation 3 24 4 15 18 0x x x− − + = , two of its roots being equal. 
8. Solve the equation 4 3 23 40 130 120 27 0x x x x− + − + = given that the product of two roots is equal to 
the product of the other two roots. 
9. Solve the equation 4 3 216 4 48 0x x x x+ − − + = , having given that the product of two of the roots is 6. 
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10. Find the condition that the roots of the equation 3 2 0x px qx r+ + + =  should have two roots ,α β , 
connected by the relation 1 0αβ + = . 

11. Prove that for two roots of the cubic 3 0x ax b+ + = to be equal, the condition is 
2 3

0
4 27

b a
+ = . 

12. If , , ,α β γ δ  are the roots of the biquadratic 4 3 2 0x px qx rx s+ + + + = , find the condition that the root 
should be connected by the relation β γ α δ+ = + and hence solve the equation

4 3 28 21 20 5 0x x x x− + − + =  . 
13. Without solving the equation 3 2 2 2 0x x x− − + = , prove that it has no multiple roots. 
14. Solve the equation 5 3 215 10 60 72 0x x x x− + + − = , by testing for equal roots. 
15. Solve the equation 4 3 240 22 21 2 1 0x x x x− − + + = , if the roots are given to be in H.P. 
16. The difference between two roots of the equation 3 22 7 6 0x x x+ − − = is 3. Solve it by diminishing 
the roots by 3. 
17. Remove the second term from the equation 4 3 24 2 4 2 0x x x x+ + − − = . 
18. The difference of two roots of the equation 3 213 15 189 0x x x− + + = is 2. Solve it by increasing the 
roots by 2. 
19. Transform the equation 4 3 24 18 3 2 0x x x x− − − + =  into one which is wanting in the third term. 
20. If , ,α β γ  are the roots of the cubic 3 2 0x ax bx c+ + + = find the equation whose roots are 

, ,α β γ
β γ α γ α β+ + +

. 

21. If the roots of equation 3 26 11 6 0x x x− + − = be , ,α β γ , find the equation whose roots are 
2 2 2 2 2 2, ,β γ γ α α β+ + + . 
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4.0  INTRODUCTION 
Descarte’s rule of signs was first described by Rene Descartes. It is a method for determining the 
number of positive or negative real roots of a polynomial. This rule gives us an upper bound number of 
positive or negative roots of a polynomial. It is not a deterministic rule i.e., It does not tell the exact 
number of positive or negative roots. , we are going to learn the solution of cubic and biquadratic 
equations. 

4.1 UNIT OBJECTIVES 

After going through this unit, you will be able to: 
 Find out the maximum number of positive and negative roots of a complete equation.  
 Find out the maximum number of positive, negative and imaginary roots of an  incomplete 
 equation. 
 Solve cubic equation by Cardan’s Method. 
 Solve biquadratic equation by Descarte’s and Ferrari’s method. 

4.2 DESCARTE’S RULES OF SIGNS 

Here we will discuss the definition of some concept related to Descate’s rule of sign. 
Continuation or Permanence of sign 
A continuation or permanence of sign is said to occur in a polynomial ( )f x , whose terms are arranged in 
descending power of x, if the two successive terms have the same sign. 
For example: In 7 6 5 4 3 27 9 7 4 11 10x x x x x x x+ − − − + − + , there are three continuation of sign occurring 
at 6x+ , 49x− , 37x− . 
For example: In 6 5 4 3 27 11 5 6 19 11x x x x x x− + − − − + , there are four changes or variations of signs 
occurring at 57x− , 411x , 35x−  and 11. 
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Complete equation 
An equation: 
(i)  The degree of the equation is equal to the sum of the number of continuation and variations of signs. 
(ii)  A continuation of sign becomes a variation of sign, if x is changed into –x and vice a versa. 
Ambiguity of Sign 
When any term of a polynomial ( )f x  has the double sign ± ,  , the ambiguity of sign is said to occur. 
Rule 1:  The number of changes of signs of the coefficients in ( )f x always exceed the number of 
positive roots in any polynomial equation ( ) 0f x = with real coefficients. 
Rule  2:  The number of changes of signs of the coefficients in ( )f x−  always exceed the number of 
negative roots in any polynomial equation ( ) 0f x = with real coefficients. 
Proof:  Let the sign of terms in a polynomial ( )f x be 
+ + - - - + - + - 
There are five changes of signs in the given polynomial. On multiplying the given polynomial by a 
binomial x-h (h  > 0) in which the signs are + -, we get  
+ + - - - + - + - 
+ -  
 
+ + - - - + - + - 

-       - + + + - + - + 
 
+ ±  -     + - + - +  ... (i) 
We have three ambiguous signs in the resulting polynomial which replace each continuation of sign in 
the original polynomial. 
 Now, consider the most unfavorable case in which continuation replace each ambiguity. 
It can be seen that the resulting series of signs is same as the original with an additional change of sign 
at end. 
 Now, if we take the lower signs of equation (i), we get 
+ - - + + + - + - + 
Thus, we can see that in both cases there are six changes of signs which is at least one more than the 
number of changes of signs in the original polynomial. 
 Hence on multiplying a polynomial by a factor of the form x-h (h > 0), at least one additional 
change of signs will always introduced. 
 Now, let an nth degree equation ( ) 0f x = has p positive roots (p < n) say, 1 2, ,......., ph h h and 

remaining roots are negative, zero or imaginary. 
 Then, 1 2( ) ( )( ).......( ) ( )pf x x h x h x h xφ= − − − , where ( )xφ is of (n - p)th degree. 

The  expression ( )xφ may or may not have any change of sign, but when it is multiplied by 

1 2( )( ).......( )px h x h x h− − − then at least p new changes of signs introduce in the product so that ( )f x will 

have at least p changes of signs. 



Algebra, Calculus & Solid Geometry 77 

Hence, the number of changes of signs in ( )f x always exceeds the number of positive roots of
( ) 0f x = . 

Again the number of negative roots of ( ) 0f x = are the positive roots of ( ) 0f x− = and therefore 
the number of changes of signs in ( )f x− always exceed the number of negative roots of ( ) 0f x = . 

4.3 SOLUTION OF CUBIC AND BIQUARDATIC EQUATION 

4.3.1 Cubic Equation 
Cubic equation is an equation of third degree. The most general form of a cubic equation is 

3 2 0x ax bx c+ + + = and by increasing each root of the cubic by 
3
a  it can be transformed into simpler 

form 3 0x px q+ + = . 
4.3.2 Cardan’s method of solving a cubic equation 
Let the general cubic equation be 3 2

0 1 2 33 3 0a x a x a x a+ + + =    ...(i) 

After removing the second term and multiplying the roots by 0a , equation (i) reduces to 3Z +3HZ+G=0  
       .....(ii) 

Where 2 2 3
0 1 0 2 1 0 3 0 1 2 1Z=a , H=a  and G=a 3 2x a a a a a a a a+ − − +  

Let Z=u+v  
By cubing, we get  

3 3 3 3 3 3 3

3 3 3

Z ( ) Z 3 ( ) 3
3 ( )

u v u uv u v v u uvZ v
Z uvZ u v
= + ⇒ = + + + = + +

⇒ − − +
    ... (iii) 

Comparing the coefficient of like terms in equations (ii) and (iii), we get 
3 3 3 3 3-3uv = 3H uv = -H u H  and u Gv v⇒ ⇒ = − + = −  

Quadratic equation having roots 3 3u , v is 2 3 3 3 3t -(u +v )t+u 0v =  
2 3t +Gt-H 0⇒ =          .... (iv) 

2 3-G G 4Ht = 
2

± +
⇒  

Suppose 
22 3

3 3 G - G 4H-G+ G 4Hu = and v
2 2

− ++
=

3

 

From above we get three values of u and v as 2u, uω, uω  and 2v, vω, vω respectively, where 2ω, ω  are 
the imaginary cube roots of unity. 
We get the values of Z=u+v by choosing, the values of u and v such that their product uv= -H is real. 
Thus, we have 2 2u+v, uω+vω , uω +vω as the three values of Z and we can get the corresponding values 
of x from the relation 0 1Z=a x a+ . 

Nature of the Roots of the Cubic equation 3Z 3+ HZ+G =0  
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From the above section, we have  
22 3

3 3 G - G 4H-G+ G 4Hu = and v
2 2

− ++
=

3

 and hence the three 

values of u and v are 2u, uω, uω  and 2v, vω, vω respectively, where 2ω, ω  are the imaginary cube roots 
of unity. 
We obtain the values of Z = u+ v, by choosing the values of u and v such that their product uv= -H is 
real. 
Let , ,α β γ  be the roots of equation (ii), then  
 =u+vα   

2 -1+i 3 1 3 1 3β=uω+vω u (u+v) (u-v)
2 2 2 2

iv i
   − −

= + = − +      
   

 

and 2 -1-i 3 1 3 1 3γ=uω +vω=u (u+v) (u-v)
2 2 2 2

iv i
   − +

+ = − −      
   

 

Now four cases arise: 
Case I: If 2 3G 4H+  is positive, 2 3G 4H 0+ > , then the roots of equation (iv) are real 

3 3u  and v⇒  are both real or u and v are both real. 
α⇒  is real while β   and γ  are conjugate complex numbers. 

Case II: If 2 3G 4H+  is negative, i.e. 2 3G 4H 0+ < , then the roots of equation (iv) are conjugate 
complex. 

3 3u  and v⇒  are conjugate complex numbers. 
⇒  u and v are conjugate complex numbers. 
∴(u + v) is real and (u - v) is purely imaginary. 

α⇒  , β   and γ  are real roots 

Case III:  If 2 3G 4H+  is zero, i.e. 2 3G 4H 0+ = , then the roots of equation (iv) are equal 
3 3u  = v u = v∴ ⇒  

∴All the roots are real while β and γ  are equal roots. 

Case IV:  If  G H= 0= , then equation (ii) becomes 3 0Z α β γ= ⇒ = =  
Hence, all the roots are equal. 
The irreducible case of Cardan’s method 
If 2 3G 4H+  is negative, i.e.  2 3G 4H 0+ <  , then the roots of equation 3 3t +Gt-H 0= are conjugate  
complex. 

3 3u  and v⇒  are conjugate complex numbers. 
u and v⇒  are conjugate complex numbers. 

In this case, we use De-Moivre’s theorem to find the cube roots of complex numbers. 

 Let 3 3u a+ib and v a-ib= = By putting a=rcosθ and b=rsinθ so that 2 2r a +b=  and -1θ=tan b
a

 
 
 

 

we get, 3u (cos sin ) r[cos(θ+2nπ)+isin(θ+2nπ)]r iθ θ= + =  
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1 1
3 3[cos(θ+2nπ)+isin(θ+2nπ)]u r⇒ =  

1
3 θ+2nπ θ+2nπcos +isin

3 3
r     =         

, where n=0, 1, 2 

Similarly, 
1
3 θ+2nπ θ+2nπv=r cos -isin

3 3
    

        
,where n=0, 1, 2 

1 1 1
3 3 3θ+2nπ θ+2nπ θ+2nπ θ+2nπ θ+2nπZ=u+v=r cos +isin r cos -isin 2r cos

3 3 3 3 3
            ∴ + =                        

where n=0, 1, 2 

Hence, the three values of Z are  
1
3 θ2r cos

3
 
 
 

,
1
3 θ+2π2r cos

3
 
 
 

,
1
3 θ+4π2r cos

3
 
 
 

, where 2 2r a +b=  and -1θ=tan b
a

 
 
 

. 

Example:  Solve the equation 3 228x 9 1 0x− + =  by Cardan’s method. 
Solution:  The given equation is 3 228x 9 1 0x− + =      ...(i) 
Here the third term is missing. First of all we transform it into an equation in which the second term 

from the beginning is missing. This can be done by substituting 1x=
y

in (i). 

Putting 1x=
y

in (i), we get 

  3
3 2

28 9 1 0 9 28 0
y

y y
y

− + = ⇒ − + =      ...(ii) 

Let   y=u+v  
∴  3 3y =(u+v)  
or  3 3 3 3 3y =u +v 3uv(u+v)=u 3uvyv+ + +  

3 3 3y 3uvy (u +v ) 0− − =         ...(iii) 
Comparing the coefficients of like terms in (ii) and (iii), we get 

3 3 3 3uv=3     (uv) (3) u v =27⇒ = ⇒  

and   3 3u +v 28= −  
Thus 3u and 3v are the roots of the equation 
 2 3 3 3 3t (u +v )t+u 0v− =  

i.e. 2t 28t+27 0− =  i.e., (t+1)(t+27) 0 t=-1 or -27= ⇒  

Let 3u 1= − and 3 3v = −  
One real value of u is -1 and one real value of v is -3 
∴One real value of y=u+v  is -4  

i.e., One real value of 1x
y

=  is 1
4

−  

Thus 1
4

−  is a root of equation (i). By synthetic division, we have  
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         1
4

−  28 -9 0 1 

    -7 4 -1 
   28 -16 4 0 
∴Depressed equation of (i) is 228 16 4 0x x− + =  
or    27 4 1 0x x− + =  

∴   4 16 28 4 12 4 2 3 2 3
14 14 14 7

i ix ± − ± − ± ±
= = = =  

Hence the roots are 1
4

− , 2 3
7

i± . 

Example: Solve the equation 3x 3 14 0x+ − =  by Cardan’s method. 
Solution: The given equation 3x 3 14 0x+ − =      ...(i) 
Let   x=u+v  
∴  3 3=(u+v)x  
or  3 3 3 3 3=u +v 3uv(u+v)=u 3uvxx v+ + +  
i.e.  3 3 33uvx (u +v ) 0x − − =       ...(iii) 
Comparing the coefficients of like terms in (ii) and (iii), we get 

3 3 3 3uv=-1     (uv) ( 1) u v =-1⇒ = − ⇒  
and   3 3u +v 14=  
Thus 3u and 3v are the roots of the equation 
 2 3 3 3 3t (u +v )t+u 0v− =  
i.e. 2t 14t-1 0− =   

Solving for t, we get 14 196 4 14 10 2 14 10 2 7 5 2
2 2 2

t ± + ± ±
= = = = ±  

Let 3u 7 5 2= + and 3 7 5 2v = −  
∴ u and v are of the form 2p q±  
Let  3 3u 7 5 2 (p+q 2)= + =  and  3 37 5 2 (p-q 2)v = − =  
Then 3 3 2 27 5 2 2 2 6 3 2p q pq p q+ = + + −   
and 3 3 2 27 5 2 2 2 6 3 2p q pq p q− = − + −  
Adding and subtracting, we have  

3 2 2 27 p +6pq p(p +6q )= =        ...(iii) 

and  3 2 2 25 2 3 (3 2 )q p q q p q= + = +       ...(iv) 
    From (iii) and (iv), it is clear that p is a factor of 7 and q is a factor of 5. By inspection we find that 
p=1, q=1 satisfy (iii) and (iv). 
∴   2 1 2u p q= + = +  and  2 1 2u p q= − = −  are real cube roots of 3u  and 

3v  satisfying 1uv = −  
∴ One root of (i) is given by 2x u v= + =  
By synthetic division, we have 
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   2 1 0 3 -14 
     2 4  14 
  
  1 2 7 0 
  
∴Depressed equation of (i) is 2 2 7 0x x+ + =  

∴ 2 4 28 1 6
2

x i− ± −
= = − ±  

Hence roots are -2, 1 6i− ± . 
Check Your Progress 
1. Solve the equation 3 12 65 0x x− − = by cardan’s method. 

Ans 5 3 35,
2
i− ±  

4.4.1 Descarte’s Solution of the Biquardatic Equation. 
Here we are going to find the roots of two different types of biquadratic equation using Descarte’s 
method. 
Descarte’s method for solving the Biquadratic equation  

4 2 0x qx rx s+ + + =  

The given biquadratic equation is 4 2 0x qx rx s+ + + =     ... (i) 
Let the equation (i) can be split up two quadratic factors 

2x lx m+ +  and 2x lx n− +  
4 2 2 2( )( )x qx rx s x lx m x lx n∴ + + + = + + − +      ... (ii) 

By comparing the coefficients of like terms in equation (ii),, we get  
2 2m n l q n m l q+ − = ⇒ + = +        ... (iii) 

ln rlm r n m
l

− = ⇒ − =         ... (iv) 

and mn s=          ... (v) 
By using, the identity 2 2( ) ( ) 4n m n m mn+ − − =  we eliminate m and n. 
From equation (iii), (iv) and (v), we get  

( )
2 2

2 2 4 2 2
2 2( ) 4 2 4r rl q s l l q q s

l l
+ − = ⇒ + + − =  

( )6 4 2 2 2 2 6 4 2 2 22 4 2 ( 4 ) 0l l q l q r l s l l q l q s r⇒ + + − = ⇒ + + − − =   

  Which is cubic equation in 2l . By trial method, 2l and thus l can be determined and then the values of 
m and n can be found from equation (iii) and (iv). 
Hence, L.H.S of the equation (i) reduces to two quadratic factors 2x lx m+ + and 2x lx n− + . When 
these factors are equated to zero, we obtain four values of x, these four values of x are the roots of the 
given biquadratic equation. 
Descarte’s method for solving the biquadratic equation 
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4 3 2

0 1 2 3 44 6 4 0a x a x a x a x a+ + + + =  

Let the biquadratic equation be 4 3 2
0 1 2 3 44 6 4 0a x a x a x a x a+ + + + =   ... (i) 

To transform the given equation into another equation in which the second term is missing and the 
coefficient of the leading term is unity, we put 0 1Z a x a= +  in equation (i). 

4 2 2 2
0Z 6HZ 4GZ+(a I-3H ) 0+ + =        ... (ii) 

where, 2 2 3 2
0 2 1 0 3 0 1 2 1 0 4 1 3 2H=a ,  G=a 3 2  and I=a a 4a a 3a a a a a a a a− − + − +  

Let equation (i) can be split up into two quadratic factors, 
2Z pZ q+ + and 2 'Z pZ q− +  

4 2 2 2 2 2 '
06 4 (a I-3H ) ( )( )Z HZ GZ Z pZ q Z pZ q∴ + + + = + + − +    ... (iii) 

Compairing the coefficients of like terms in equation (iii), we get  
' 2 ' 26 6q q p H q q p H+ − = ⇒ + = +       ... (iv) 

' ' 44 Gpq pq G q q
p

− = ⇒ − =        ... (v) 

and ' 2 2
0 3qq a I H= −         ...(vi) 

By using the identity ' 2 ' 2 '( ) ( ) 4q q q q qq+ − − = we eliminate q and 'q  . From (iv), (v) and (vi), we get 
2

2 2 2 2
0

4G(p +6H) - 4(a I-3H )
p

 
= 

 
 

2
4 2 2 2 2

02

16( 12 36 ) 4( 3 )Gp p H H a I H
p

⇒ + + − = −  

6 4 2 2 2 2 2 2
012 36 16 4 ( 3 )p p H p H G p a I H⇒ + + − = −  

6 4 2 2 2 2
012 4 (12 ) 16 0p p H p H a I G⇒ + + − − =  

which is a cubic equation in 2p . Solving it by trial method, 2p and p can be determined. 

And then q  and 'q can be found from equation (iv) and (v). 
Thus, L.H.S of the equation (iii) reduces to product of two quadratic factors. When these factors are 
equated to zero, we get four values of Z, which are the roots of the equation (ii) from the relation

0 1Z a x a= + , four values of x can be obtained. 

Note:  The identity  
4 2 2 2 2 2 '

06 4 ( ) 3 ) ( )( )Z HZ GZ a I H Z pZ q Z pZ q+ + + − = + + − +  
is called Descarte’s Resolvant. 
Example: Apply Descarte’s method to solve the equation 4 3 210 35 50 24 0x x x x− + − + = . 
Solution:  The given equation is 4 3 210 35 50 24 0x x x x− + − + =    ...(i) 
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To remove the second term, we diminish the roots by h where 1

0

10 5
4 2

a
h

na
= − = =  

and then multiplying the roots of (i) by 2, we get 
4 3 2 2 3 410.2 35.2 50.2 24.2 0y x x x− + − + =  

4 3 220 140 400 384 0y x x x⇒ − + − + =       ...(ii) 
where 2y x=  
Now diminishing the roots of equation (ii) by 5 using synthetic division, we have 
   5 1 -20 140 -400 384 
     5 -75 325 -375 
    1 -15 65 -75 9 
     5 -50 75  
    1 -10 15 0 
     5 -25   
    1 -5 -10 
     5   
    1 0 
    1 

∴The transformed equation is 4 210 9 0Z Z− + =      .... (iii) 

where 55 2 5
2

ZZ y x x +
= − = − ⇒ =       ...(iv) 

From equation (iii), we have  
2 2( 1)( 9) 0 1, 3Z Z Z− − = ⇒ = ± ±  

Then from (iv), 1 5 1 5 3 5 3 5, , ,
2 2 2 2

x + − + + − +
=  i.e.3,2,4,1 

Thus, the required roots are 1,2,3 and 44. 
Check Your Progress 
1. Apply Descarte’s method to solve the equation 4 23 42 40 0x x x− − − = . 

Ans. 3 31 ,4 and -1
2
i− ± . 

4.4.2 Ferrari Method of Solving a Biquadratic Equation 
We will solve the biquadratic equation 4 3 2

0 1 2 3 44 6 4 0a x a x a x a x a+ + + + = by splitting it into product 
of two quadratic factors by Ferrari’s method. This is done by expressing the given biquadratic equation 
as the difference of two perfect squares. 
 The given biquadratic equation is 4 3 2

0 1 2 3 44 6 4 0a x a x a x a x a+ + + + =  ...(i) 
4 3 2

0 1 2 3 44 6 4a x a x a x a x a⇒ + = − − −  
2 4 3 2

0 0 1 0 2 0 3 0 44 6 4a x a a x a a x a a x a a⇒ + = − − −   [Multiplying both sides by 0a ] 
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Now, to make L.H.S. a perfect square, we add 2 2
14a x on both sides  

2 4 3 2 2 2 2 2
0 0 1 1 1 0 2 0 3 0 44 4 4 6 4a x a a x a x a x a a x a a x a a+ + = − − −  

2 2 2 2 2
0 1 1 0 2 0 3 0 4( 2 ) 4 6 4a x a x a x a a x a a x a a⇒ + = − − −     ... (ii) 

The above equation can be written as 
2 2 2 2 2 2 2

0 1 1 0 2 0 3 0 4 0 1( 2 ) 4 6 4 2( 2 )a x a x a x a a x a a x a a a x a xλ λ λ+ + = − − − + + + , where λ  is an arbitrary 
constant. 

2 2 2 2 2
0 1 1 0 2 0 1 0 3 0 4( 2 ) (4 6 2 ) 4( ) ( )a x a x a a a a x a a a x a aλ λ λ λ⇒ + + = − + + − + −    ....(iii) 

We choose λ in such a way that R.H.S. becomes a perfect square of a linear expression in x. This is 
possible if and only if its discriminant is zero. 

 i.e. 
2 2 2

1 0 3 1 0 2 0 0 4
3 2 2 2

2 1 3 0 4 0 2 4 1 4 0 3

[4( )] 4(4 6 2 )( ) 0
3 (4 ) (3 2 2 ) 0

a a a a a a a a a
a a a a a a a a a a a a

λ λ λ

λ λ λ

− − − + − =

⇔ − + − + − − =
 

which is a cubic in λ  and is called Resolvent Cubic. Find the value of λ which satisfies this cubic. 
Suppose the R.H.S of equation (iii) is a perfect square of linear expression px+q. 
 Thus, equation (iii) becomes, 

2 2 2
0 1( 2 ) ( )a x a x px qλ+ + = +  

2 2 2
0 1( 2 ) ( ) 0a x a x px qλ⇒ + + − + =  

2 2
0 1 0 1( 2 ) ( ) ( 2 ) ( ) 0a x a x px q a x a x px qλ λ   ⇒ + + − + + + + + =     

2 2
0 1 0 1(2 ) ( ) (2 ) ( ) 0a x a p x q a x a p x qλ λ   ⇒ + − + − + + + + =     

Thus, the L.H.S. of equation (iii) is written as the product of two quadratic factors 
2

0 1(2 ) ( )a x a p x qλ + − + −  and 2
0 1(2 ) ( )a x a p x qλ + + + +  which when equated to zero gives four 

values of x, which are the roots of the equation (i). 
Note: (i) To make the coefficient of 4x unity, we multiply the roots of given equation by a suitable 
constant. 
(ii)  We can obtain roots of resolvent cubic by inspection. 
Example: Solve the equation 4 3 22 6 3 2 0x x x+ − + = by Ferrari’s method. 
Solution:  The given equation is 4 3 22 6 3 2 0x x x+ − + =     ... (i) 
In equation (i), the coefficient of 4x is 2. So to make the coefficient of 4x unity, we multiply roots of 
equation (i) by 2. 

0 4 1 3 2 2 32 .2 2 .6 2 .3 2 .2 0y y y+ − + =  
4 3 26 6 16 0y y y⇒ + − + =        ... (ii) 
4 3 2 4 3 2 2 26 6 16 6 9 9 6 16y y y y y y y y⇒ + = − ⇒ + + = + −  

2 2 2( 3 ) 15 16y y y⇒ + = −        .... (iii) 

Now, 
22 2 2 2 2( 3 ) ( 3 ) 2( 3 )y y y y y yλ λ λ + + = + + + +   

2 2 215 16 2( 3 )y y y λ λ= − + + +      [Using (iii)] 
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2 2(15 2 ) 6 ( 16)y yλ λ λ= + + + −      ...(iv) 

We choose λ in such a way that R.H.S. of (iv) is a perfect square. This is possible if and only if 
discriminant of R.H.S. =0 

2 2(6 ) 4(15 2 )( 16) 0λ λ λ− + − =  
2 2 3 29 (15 2 )( 16) 0 3 16 120 0λ λ λ λ λ λ− + − = ⇒ + − − =  

By inspection, 5λ = is a root of above equation. 
By putting 5λ = , equation (iv) becomes 

( ) ( )22 22 2 23 5 25 30 9 3 5 5 3y y y y y y y + + = + + ⇒ + + = +   

( ) ( )2 22 3 5 5 3 0y y y⇒ + + − + =  

( ) ( ) ( ) ( )2 23 5 5 3 3 5 5 3 0y y y y y y   ⇒ + + − + + + + + =     
2 2( 2 2)( 8 8) 0y y y y⇒ − + + + =  

∴Either 2 2 4 8 2 22 2 0 1
2 2

iy y y i± − ±
− + = ⇒ = = = ±  

or 2 8 64 32 8 4 28 8 0 4 2 2
2 2

y y y − ± − − ±
+ + = ⇒ = = = − ±  

which are the roots of equation (ii). 

Dividing each root by 2, root of given equation (i) are 1
2

i±  and 2 2− ± . 

Check Your Progress 
1. Solve  4 3 22 7 8 12 0x x x x+ − − + = by Ferrari’s method. 
Ans. -3, -2, 1, 2. 

4.5 SUMMARY 
• A continuation or permanence of sign is said to occur in a polynomial ( )f x , whose terms are 

arranged in descending power of x, if the two successive terms have the same sign. 
• The number of negative roots of ( ) 0f x =  are the positive roots of ( ) 0f x− =  and therefore the 

number of changes of signs in ( )f x always exceed the number of negative roots of ( )f x . 

• We will reduce the cubic 3 2
0 1 2 33 3 0a x a x a x a+ + + = to the form in which second term is missing and 

the coefficient of the leading term is unity, all other coefficients being integers. 
• We will reduce the cubic 4 3 2

0 1 2 3 44 6 4 0a x a x a x a x a+ + + + = to the form in which second term is 
missing and the coefficient of the leading term is unity, all other coefficients being integers. 

4.6 KEY TERMS 
• Real Polynomial: A polynomial 1

0 1( ) ...n n
nf x a x a x a−= + + + is said to be real polynomial If all the 

coefficients 0 1, ,..., na a a  in ( )f x  are real. 

• Zero Polynomial: If all the coefficients 0 1, ,..., na a a  in ( )f x  are zero then polynomial is said to be 
zero polynomial. 
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• Complete and Incomplete equation: A General Equation of degree n is said to be complete if it 
contains all power of the variable x from 0 to n. For example 3 2

0 1 3 4 0a x a x a x a+ − + = is complete 
equation of third degree. 
If any of the powers of the variable are missing from an equation of degree n is called incomplete 
equations. For example 3 2

0 1 4 0a x a x a+ + = is incomplete equation of third degree. 

• Root of an Equation: The value of x for which ( )f x  vanishes is called root of equation ( ) 0f x = . 
For example if ( ) 0f h = , then h is called root of the equation ( ) 0f x = . 

• Continuation or Permanence of sign: A continuation or permanence of sign is said to occur in a 
polynomial ( )f x , whose terms are arranged in descending power of x, if the two successive terms 
have the same sign. 

4.7 QUESTIONS AND EXERCISES 
1. Solve the equation 3 228 9 1 0x x− + = by Cardan’s method. 
2. Show that the roots of the cubic equation 3 212 8 0x x− + = are  

2 4 84cos ,4cos ,4cos
9 9 9
π π π

 
3.  Solve the equation by expressing them as product of two quadratic factors 

(i) 
4 25 6 5 0x x x− − − =  (ii) 

4 28 24 7 0x x x− − + =  
4.  Solve the given equation by Descarte’s method 4 3 22 6 3 2 0x x x+ − + = . 
5.  Solve the equation 4 215 20 6 0x x x− + − = by the method of resolution into quadratic factors. 
6.  Solve the equation by using Ferrari’s method 4 3 210 26 10 1 0x x x x− + − + = . 
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